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Abstract

Machine translation systems are expected to
cope with various types of constraints in many
practical scenarios. While neural machine
translation (NMT) has achieved strong perfor-
mance in unconstrained cases, it is non-trivial
to impose pre-specified constraints into the
translation process of NMT models. Although
many approaches have been proposed to ad-
dress this issue, most existing methods can
not satisfy the following three desiderata at the
same time: (1) high translation quality, (2) high
match accuracy, and (3) low latency. In this
work, we propose a template-based method that
can yield results with high translation quality
and match accuracy and the inference speed of
our method is comparable with unconstrained
NMT models. Our basic idea is to rearrange the
generation of constrained and unconstrained to-
kens through a template. Our method does not
require any changes in the model architecture
and the decoding algorithm. Experimental re-
sults show that the proposed template-based
approach can outperform several representative
baselines in both lexically and structurally con-
strained translation tasks. 1

1 Introduction

Constrained machine translation is of important
value for a wide range of practical applications,
such as interactive translation with user-specified
lexical constraints (Koehn, 2009; Li et al., 2020;
Jon et al., 2021), domain adaptation with in-domain
dictionaries (Michon et al., 2020; Niehues, 2021),
and webpage translation with markup tags as struc-
tural constraints (Hashimoto et al., 2019; Hanne-
man and Dinu, 2020). Developing constrained
neural machine translation (NMT) approaches can
make NMT models applicable to more real-world
scenarios (Bergmanis and Pinnis, 2021).

∗ Corresponding authors: P.Li (lipeng@air.tsinghua.
edu.cn) and Y.Liu (liuyang2011@tsinghua.edu.cn).

1The source code is available at https://github.com/
THUNLP-MT/Template-NMT.

However, it is challenging to directly impose
constraints for NMT models due to their end-to-
end nature (Post and Vilar, 2018). In accordance
with this problem, a branch of studies modifies the
decoding algorithm to take the constraints into ac-
count when selecting candidates (Hokamp and Liu,
2017; Hasler et al., 2018; Post and Vilar, 2018; Hu
et al., 2019; Hashimoto et al., 2019). Although
constrained decoding algorithms can guarantee the
presence of constrained tokens, they can signifi-
cantly slow down the translation process (Wang
et al., 2022) and can sometimes result in poor trans-
lation quality (Zhang et al., 2021).

Another branch of works constructs synthetic
data to help NMT models acquire the ability to
translate with constraints (Song et al., 2019; Dinu
et al., 2019; Michon et al., 2020). For instance,
Hanneman and Dinu (2020) propose to inject
markup tags into plain parallel texts to learn struc-
turally constrained NMT models. The major draw-
back of data augmentation based methods is that
they sometimes violate the constraints (Hanneman
and Dinu, 2020; Chen et al., 2021), limiting their
application in constraint-critical situations.

In this work, we use free tokens to denote the
tokens that are not covered by the provided con-
straints. Our motivation is to decompose the whole
constrained translation task into the arrangement
of constraints and the generation of free tokens.
The constraints can be of many types, ranging
from phrases in lexically constrained translation to
markup tags in structurally constrained translation.
Intuitively, only arranging the provided constraints
into the proper order is much easier than generating
the whole sentence. Therefore, we build a template
by abstracting free token fragments into nontermi-
nals, which are used to record the relative position
of all the involved fragments. The template can
be treated as a plan of the original sentence. The
arrangement of constraints can be learned through
a template generation sub-task.
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Once the template is generated, we need some
derivation rules to convert the nonterminals men-
tioned above into free tokens. Each derivation rule
shows the correspondence between a nonterminal
and a free token fragment. These rules can be
learned by the NMT model through semi-structured
data. We call this sub-task template derivation.
During inference, the model firstly generates the
template and then extends each nonterminal in
the template into natural language text. Note that
the two proposed sub-tasks can be accomplished
through a single decoding pass. Thus the decod-
ing speed of our method is comparable with un-
constrained NMT systems. By designing template
format, our approach can cope with different types
of constraints, such as lexical constraints, XML
structural constraints, or Markdown constraints.

Contributions In summary, the contributions of
this work can be listed as follows:

• We propose a novel template-based con-
strained translation framework to disentangle
the generation of constraints and free tokens.

• We instantiate the proposed framework with
both lexical and structural constraints, demon-
strating the flexibility of this framework.

• Experiments show that our method can outper-
form several strong baselines, achieving high
translation quality and match accuracy while
maintaining the inference speed.

2 Related Work

2.1 Lexically Constrained Translation

Several researchers direct their attention to modify-
ing the decoding algorithm to impose lexical con-
straints (Hasler et al., 2018). For instance, Hokamp
and Liu (2017) propose grid beam search (GBS)
that organizes candidates in a grid, which enumer-
ates the provided constrained tokens at each decod-
ing step. However, the computation complexity
of GBS scales linearly with the number of con-
strained tokens. To reduce the runtime complexity,
Post and Vilar (2018) propose dynamic beam allo-
cation (DBA), which divides a fixed size of beam
for candidates having met the same number of con-
straints. Hu et al. (2019) propose to vectorize DBA
further. The resulting VDBA algorithm is still sig-
nificantly slower compared with the vanilla beam
search algorithm (Wang et al., 2022).

Another line of studies trains the model to copy
the constraints through data augmentation. Song
et al. (2019) propose to replace the corresponding
source phrases with the target constraints, and Dinu
et al. (2019) propose to insert target constraints
as inline annotations. Some other works propose
to append target constraints to the whole source
sentence as side constraints (Chen et al., 2020;
Niehues, 2021; Jon et al., 2021). Although these
methods introduce little additional computational
overhead at inference time, they can not guaran-
tee the appearance of the constraints (Chen et al.,
2021). Xiao et al. (2022) transform constrained
translation into a bilingual text-infilling task. A
limitation of text-infilling is that it can not reorder
the constraints, which may negatively affect the
translation quality for distinct language pairs.

Recently, some researchers have tried to adapt
the architecture of NMT models for this task. Su-
santo et al. (2020) adopt non-autoregressive trans-
lation models (Gu et al., 2019) to insert target con-
straints. Wang et al. (2022) prepend vectorized
keys and values to the attention modules (Vaswani
et al., 2017) to integrate constraints. However, their
model may still suffer from low match accuracy
when decoding without VDBA. In this work, our
method can achieve high translation quality and
match accuracy without significantly increasing
the inference overhead.

2.2 Structurally Constrained Translation

Structurally constrained translation is useful since
text data is often wrapped with markup tags on
the Web (Hashimoto et al., 2019), which is an es-
sential source of information for humans. Com-
pared with lexically constrained translation, struc-
turally constrained translation is relatively unex-
plored. Joanis et al. (2013) examine a two-stage
method for statistical machine translation systems,
which firstly translates the plain text and then in-
jects the tags based on phrase alignments and some
carefully designed rules. Moving to the NMT
paradigm, large-scale parallel corpora with struc-
turally aligned markup tags are scarce. Hanne-
man and Dinu (2020) propose to inject tags into
plain text to create synthetic data. Hashimoto et al.
(2019) collect a parallel dataset consisting of struc-
tural text translated by human experts. Zhang et al.
(2021) propose a constrained decoding algorithm
to translate structured text. However, their method
significantly slows down the translation process.
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In this work, our approach can be easily extended
for structural constraints, leaving the decoding al-
gorithm unchanged. The template in our approach
can be seen as an intermediate plan, which has
been investigated in the field of data-to-text genera-
tion (Moryossef et al., 2019). Zhang et al. (2019)
also explored the idea of disentangling different
parts in a sentence using special tokens.

3 Approach

3.1 Template-based Machine Translation
Given a source-language sentence x = x1 · · ·xI
and a target-language sentence y = y1 · · · yJ , an
NMT model is trained to estimate the conditional
probability P (y|x;θ), which can be given by

P (y|x;θ) =
J∏

j=1

P (yj |x,y<j ;θ), (1)

where θ is the set of parameters to optimize and
y<j is the partial translation at the j-th step.

In this work, we firstly build a template to sim-
plify the whole sentence. Formally, we use s and t
to represent the source- and target-side templates,
respectively. In the template, free token fragments
are abstracted into nonterminals. We use e and f
to denote the derivation rules of the nonterminals
for the source and target template, respectively.

The model is trained on two sub-tasks. Firstly,
the model learns to generate the target template t:

P (t|s, e;θ) =
T∏

j=1

P (tj |s, e, t<j ;θ). (2)

Secondly, we train the same model to estimate
the conditional probability of f :

P (f |s, e, t;θ) =
F∏

j=1

P (fj |s, e, t, f<j ;θ). (3)

The target sentence y can be reconstructed by
extending each nonterminal in t using the corre-
sponding derivation rule in f . We can jointly learn
the two sub-tasks in one pass to improve both the
training and inference efficiency. Formally, the
model is trained to maximize the following joint
probability of t and f in practice:

P (t, f |s, e;θ) = P (t|s, e;θ)× P (f |s, e, t;θ).
(4)

3.2 Template for Lexical Constraints
In lexically constrained translation, some source
phrases in the input sentence are required to be
translated into pre-specified target phrases. For a
source sentence x, we use

{〈
u(n),v(n)

〉}N

n=1
to

denote the given constraint pairs, where u(n) is the
n-th source constraint, and v(n) is the correspond-
ing target constraint. All the N source constraints
can divide x into 2N + 1 fragments:

x = p(0)u(1)p(1) · · ·u(N)p(N), (5)

where p(n) is the n-th free token fragment. We can
set p(0) to an empty string to represent sentences
that start with a constraint, and set p(N) to an empty
string for sentences that end with a constraint. We
can also set p(n) to an empty string for the cases
where u(n) and u(n+1) are adjacent in x. Similarly,
the target sentence can be represented by

y = q(0)v(i1)q(1) · · ·v(iN )q(N), (6)

where q(n) is the n-th free token fragment in the
target sentence y. We use i1, · · · , iN to denote
the order of the constraints in y. The n-th index
in is not necessarily equal to n, since the order
of the constraints in the target sentence y is often
different from that in the source sentence x.

We then abstract each fragment of text into non-
terminals to build the template for lexically con-
strained translation. Concretely, the n-th free token
fragment in the source sentence x is abstracted into
Xn, for each n ∈ {0, · · · , N}. The n-th free token
fragment in the target sentence is abstracted into
Yn, for each n ∈ {0, · · · , N}. In order to indicate
the alignment between corresponding source and
target constraints, we abstract un and vn into the
same nonterminal Cn. Note that Xn and Yn are
not linked nonterminals, since fragments of free
tokens are not bilingually aligned. The resulting
source- and target-side templates are given by

s = X0C1X1 · · ·CNXN ,

t = Y0Ci1Y1 · · ·CiNYN .
(7)

We need to define some derivation rules to con-
vert the template into a natural language sentence.
The derivation of nonterminals can be seen as the
inverse of the abstraction process. Thus the deriva-
tion of the target-side template t would be

Cn → v(n) for each n ∈ {1, · · · , N},
Yn → q(n) for each n ∈ {0, · · · , N}.

(8)
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Input x′ 

Output y′  Jay ChouC1  Orange JasmineC2 <sep>     Y0 C1 Y1 C2 Y2  Y0 ϕ  sang the songY1  .Y2

 歌曲X0  的演唱者是X1  。X2

<sep>

 周杰伦C1  七⾥⾹C2 <sep> <sep>    X0 C2 X1 C1 X2

Derivation of Constraints d Derivation of Free Tokens fTemplate t

Derivation of Free Tokens eTemplate sDerivation of Constraints c

Source x Target y歌曲 七⾥⾹ 的演唱者是 周杰伦 。 Jay Chou sang the song Orange Jasmine .

Constraints

Figure 1: Example for lexically constrained translation. The constraints are ⟨周杰伦, Jay Chou⟩ and ⟨七里香,
Orange Jasmine⟩. Note that Xn and Yn are not linked nonterminals, since the source and target free token fragments
are not necessarily aligned. The derivation rule X0 →歌曲 is learned through the concatenation of X0 and歌曲
(i.e., X0歌曲). “ϕ” denotes an empty string. See Section 3.2 for more details.

The derivation of the source-side template s can
be defined similarly. Note that Cn produces the
n-th source constraint un at the source side while
producing the target constraint vn at the target side.
In order to make the derivation rules learnable by
NMT models, we propose to use the concatenation
of the nonterminal and the corresponding sequence
of terminals to denote each derivation rule. For ex-
ample, we use Ynq

(n) to represent Yn → q(n). We
use d and f to denote the derivation of constraints
and free tokens at the target side, respectively:

d = C1v
(1) · · ·CNv(N),

f = Y0q
(0) · · ·YNq(N).

(9)

At the source side, we use c and e to denote
the derivation of constraints and free tokens, re-
spectively. c and e can be defined similarly. Since
the constraints are pre-specified by the users, the
model only needs to learn the derivation of free
tokens. To this end, we place the derivation of
constraint-related nonterminals before the template
as a conditional prefix. Then the model learns the
generation of the template and the derivation of
free tokens, step by step.

The final format of the input and output se-
quences at training time can be given by

x′ = c <sep> s <sep> e,

y′ = d <sep> t <sep> f ,
(10)

respectively. We use the delimiter <sep> to sepa-
rate the template and the derivations. Figure 1 gives
an example of both x′ and y′. At inference time,
we feed x′ to the encoder, and provide “d <sep>”
to the decoder as the constrained prefix. Then the
model generates the remaining part of y′ (i.e., “t
<sep> f”).

    Y0 C1 Y1 C2 Y2    C1 Y1 C2 Y2

Jay Chou   Y1 C2 Y2

Jay Chou sang the song  C2 Y2

Jay Chou sang the song Orange JasmineY2

Jay Chou sang the song Orange Jasmine .

 Y0 → ϕ

 Jay ChouC1 →

 sang the songY1 →

 .Y2 →

 Orange JasmineC2 →

Template

Natural Language Sentence

Figure 2: The template can be converted into a natural
language sentence by replacing the nonterminals accord-
ing to the corresponding derivation rules.

Figure 2 explains the way we convert the output
sequence into a natural language sentence. The
conversion from the template to the target-language
sentence can be done through a simple script, and
the computational cost caused by the conversion is
negligible, compared with the model inference.

Note that we also abstract the constraints when
building the template. The reason is that the model
only needs to generate the order of constraints in
this way, rather than copy all the specific tokens,
which may suffer from copy failure (Chen et al.,
2021). The formal representation for our lexically
constrained model is slightly different from that
defined in Eq. (4), which should be changed into

P (t, f |c, s, e,d;θ)
=P (t|c, s, e,d;θ)× P (f |c, s, e,d, t;θ). (11)
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<sep><b> </b> <i> </i>Y0 Y1 Y2 Y3 Y4  Y0 ϕ  Jay ChouY1  .Y4
Derivation of Free Tokens f

 sang the songY2  Orange JasmineY3

<sep><i> </i> <b> </b>X0 X1 X2 X3 X4  歌曲X0  七⾥⾹X1  。X4 的演唱者是X2  周杰伦X3

Template t

Derivation of Free Tokens eTemplate s

Input x′ 

Output y′ 

Source x

Target y

歌曲 <i> 七⾥⾹ </i> 的演唱者是 <b> 周杰伦 </b> 。

<b> Jay Chou </b> sang the song <i> Orange Jasmine </i> .

Figure 3: Example for structurally constrained translation. The markup tags are reserved in the template, while free
tokens are abstracted. Note that Xn and Yn are not linked nonterminals. See Section 3.3 for more details.

3.3 Template for Structural Constraints
The major challenge of structured text translation is
to maintain the correctness of the structure, which
is often indicated by markup tags (Hashimoto et al.,
2019). The proposed framework can also deal with
structurally constrained translation. Similarly, we
replace free token fragments with nonterminals to
build the template, where the markup tags are re-
served. Figure 3 shows an example. Formally,
given a sentence pair ⟨x,y⟩ with N markup tags,
the source- and target-side templates are given by

s = X0<tag1>X1 · · · <tagN>XN ,

t = Y0<tagi1>Y1 · · · <tagiN >YN ,
(12)

respectively. The order of markup tags at the target
side (i.e., i1 · · · iN ) may be different from that at
the source side (i.e., 1 · · ·N ).

For each n ∈ {0, · · · , N}, Xn can be derived
into the n-th source-side free token fragment p(n),
and Yn can be extended into the target-side free
token fragment q(n). Xn and Yn are not linked.
The derivation sequences can be defined as

e = X0p
(0) · · ·XNp(N),

f = Y0q
(0) · · ·YNq(N).

(13)

The format of the input and output would be

x′ = s <sep> e,

y′ = t <sep> f ,
(14)

respectively. Figure 3 illustrates an example for
both x′ and y′. The formal representation of
our structurally constrained model is the same as
Eq. (4). The model arranges the markup tags when
generating t and completes the whole sentence
when generating f , which is consistent with our
motivation to decompose the whole task into con-
straint arrangement and free token generation.

4 Lexically Constrained Translation

4.1 Setup

Parallel Data We conduct experiments on two
language pairs, including English-Chinese and
English-German. For English-Chinese, we use
the dataset of WMT17 as the training corpus, con-
sisting of 20.6M sentence pairs. For English-
German, the training data is from WMT20, con-
taining 41.0M sentence pairs. We provide more
details of data preprocessing in Appendix. Follow-
ing recent studies on lexically constrained transla-
tion (Chen et al., 2021; Wang et al., 2022), we eval-
uate our method on human-annotated alignment
test sets. For English-Chinese, both the validation
and test sets are from Liu et al. (2005). For English-
German, the test set is from Zenkel et al. (2020).
We use newstest2013 as the validation set, whose
word alignment is annotated by fast-align2. The
training sets are filtered to exclude test and valida-
tion sentences.

Lexical Constraints Following some recent
works (Song et al., 2019; Chen et al., 2020, 2021;
Wang et al., 2022), we simulate real-world lexi-
cally constrained translation scenarios by sampling
constraints from the phrase table that are extracted
from parallel sentence pairs based on word align-
ment. The script used to create the constraints is
publicly available.3 Specifically, the number of
constraints for each sentence pair ranges between
0 and 3, and the length of each constraint ranges
between 1 and 3 tokens. We use fast-align to
build the alignment of the training data.

2https://github.com/clab/fast_align
3https://github.com/ghchen18/cdalign/blob/

main/scripts/extract_phrase.py
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Model Configuration We adopt Trans-
former (Vaswani et al., 2017) as our NMT model,
which is optimized by Adam (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9.
Please refer to Appendix for more details on the
model configuration and the training process.

Baselines We compare our approach with the
following six representative baselines:

• Placeholder (Crego et al., 2016): replacing
constrained terms with placeholders;

• VDBA (Hu et al., 2019): modifying beam
search to incorporate target-side constraints;

• Replace (Song et al., 2019): replacing source
text with the corresponding target constraints;

• CDAlign (Chen et al., 2021): inserting target
constraints based on word alignment;

• AttnVector (Wang et al., 2022): using atten-
tion keys and values to model constraints;

• TextInfill (Xiao et al., 2022): filling free to-
kens through a bilingual text-infilling task.

Evaluation Metrics We follow Alam et al.
(2021a) to use the following four metrics to make
a thorough comparison of the involved methods:

• BLEU (Papineni et al., 2001): measuring the
translation quality of the whole sentence;

• Exact Match: indicating the accuracy that the
source constraints in the input sentences are
translated into the provided target constraints;

• Window Overlap: quantifying the overlap ra-
tio between the hypothesis and the reference
windows for each matched target constraint,
indicating if this constraint is placed in a suit-
able context. The window size is set to 2.

• 1-TERm: modifying TER (Snover et al.,
2006) by setting the edit cost of constrained
tokens to 2 and the cost of free tokens to 1.

We use sacreBLEU4 (Post, 2018) to estimate
the BLEU score, and adapt the scripts released by
Alam et al. (2021a) for the other three metrics.

4English-Chinese: nrefs:1 | case:mixed | eff:no | tok:zh
| smooth:exp | version:2.0.0. English-German: nrefs:1 |
case:mixed | eff:no | tok:13a | smooth:exp | version:2.0.0.

4.2 Main Results
Template Accuracy We firstly examine the per-
formance of the model in the template generation
sub-task before investigating the translation per-
formance. We compare the target-side template
extracted from the reference sentence and the one
generated by the model to calculate the accuracy
of template generation. Formally, if the reference
template t is Y0Ci1Y1 · · ·CiNYN , the generated
template t̂ is correct if

• t̂ = Y0Cj1Y1 · · ·CjNYN ;

• the set {j1, · · · , jN} equals {i1, · · · , iN}.

In other words, the model must generate all the
nonterminals to guarantee the presence of the pro-
vided constraints. However, the order of constraint-
related nonterminals can be flexible since there
often exist various suitable orders for the provided
constraints. In both English-Chinese and English-
German, the template accuracy of our model is
100%. An interesting finding is that our model
learns to reorder the constraints according to the
style of the target language. We provide an exam-
ple of constraint reordering in Table 1.

When generating the free token derivation f , the
model can recall all the nonterminals (i.e., Yn) pre-
sented in the template t in English-Chinese. In
English-German, however, the model omits one
free token nonterminal, of which the frequency is
0.2%. We use empty strings for the omitted nonter-
minals when reconstructing the output sentence.

Translation Performance Table 2 shows the re-
sults of lexically constrained translation, demon-
strating that all the investigated methods can recall
more provided constraints than the unconstrained
Transformer model. Our approach can improve the
BLEU score over the involved baselines. This im-
provement potentially comes from two aspects: (1)
our system outputs can match more pre-specified
constraints compared to some baselines, such as
AttnVector (Wang et al., 2022) (100% vs. 93.8%) ;
(2) our method can place more constraints in appro-
priate context, which can be measured by window
overlap. The exact match accuracy of VDBA (Hu
et al., 2019) is lower than 100% due to the out-of-
vocabulary problem in English-Chinese.

TextInfill (Xiao et al., 2022) and our approach
can achieve 100% exact match accuracy in both
the two language pairs. However, TextInfill can
only place the constraints in the pre-specified order,
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Constraints ⟨slowing down,减弱⟩; ⟨price hike,价格上涨⟩
Source Analysts are concerned that since there is no sign yet of any slowing down of this price hike , the prospect of

the British real estate market as where it is heading now is far from optimistic.

Reference 分析家担心,由于目前还看不见价格上涨 趋势有减弱 的迹象,照此发展下去,英国房地产市场前景堪
忧。

Input (enc)
C1 slowing down C2 price hike <sep> X0 C1 X1 C2 X2 <sep> X0 Analysts are concerned that since there
is no sign yet of any X1 of this X2 , the prospect of the British real estate market as where it is heading now is far
from optimistic.

Prefix (dec) C1减弱C2价格上涨 <sep>

Output Y0 C2 Y1 C1 Y2 <sep> Y0 分析师们担心,由于目前还没有迹象显示 Y1 会 Y2 ,英国房地产市场的前景远
不乐观。

Result 分析师们担心,由于目前还没有迹象显示价格上涨 会减弱 ,英国房地产市场的前景远不乐观。

Table 1: An example of our method. We replace the nonterminals in the template using the derivation rules to
reconstruct the final result (i.e., “Result”). Surprisingly, we find that our model can automatically sort the provided
constraints when generating the template. In this example, C1 is before C2 in the source-side template. But in the
target-side template generated by our model, C2 is before C1, which is more suitable for the target language.

Method BLEU Exact Window 1-TERm BLEU Exact Window 1-TERmMatch Overlap Match Overlap

Direction English-Chinese English-German

Vanilla 42.7 10.1 4.8 35.7 24.8 10.0 8.1 39.2

Placeholder 46.6 99.4 33.9 41.5 27.2 100.0 29.4 44.6
VDBA 45.8 99.6 33.4 41.7 29.0 100.0 31.1 45.1
Replace 46.4 93.8 35.5 40.7 31.1 96.6 35.7 48.3
CDAlign 46.2 92.1 31.7 41.6 29.7 95.9 32.3 46.3
AttnVector 46.9 93.8 35.8 42.4 31.3 97.5 37.2 47.9
TextInfill 45.6 100.0 32.8 39.9 30.7 100.0 35.5 47.1

Ours 47.5 100.0 36.9 43.1 32.3 100.0 38.5 49.8

Table 2: Results of the lexically constrained translation task for both English-Chinese and English-German. For
clarity, we highlight the highest score in bold and the second-highest score with underlines.

while our approach can automatically reorder the
constraints. As a result, the window overlap score
of our approach is higher than TextInfill. Please
refer to Table 8 in Appendix for more translation
examples of both our method and some baselines

4.3 Unconstrained Translation

A concern for lexically constrained translation
methods is that they may cause poor translation
quality in unconstrained translation scenarios. We
thus evaluate our approach in the standard transla-
tion task, where the model is only provided with
the source sentence x. Under this circumstance,
the input and output can be given by

x′ = ϕ <sep> X0 <sep> X0x,

y′ = ϕ <sep> Y0 <sep> Y0y,
(15)

respectively. The BLEU scores of our method are
42.6 and 25.0 for English-Chinese and English-
German, respectively. The performance of our

method is comparable with the vanilla model,
which can dispel the concern that our approach
may worsen the unconstrained translation quality.

4.4 Inference Speed

Methods Speed

Vanilla 3392 tokens per second

Ours 3390 tokens per second

Table 3: Inference speed of our method and the vanilla
model on the English-Chinese validation set.

Table 3 shows the decoding speed. Since we
did not change the model architecture and the de-
coding algorithm, the speed of our method is close
to the vanilla Transformer model (Vaswani et al.,
2017). Although our speed is almost the same as
the vanilla model, our inference time is a bit longer,
given the fact that the output sequence y′ is longer
than the original target-language sentence y.
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Method BLEU Structure Accuracy BLEU Structure Accuracy

Correct Match Correct Match

Direction English-French English-Russian

Remove 31.4 n/a n/a 21.0 n/a n/a
Split-Inject 66.1 100.00 100.00 43.1 100.00 99.85
XML 65.3 99.55 99.30 44.9 99.45 98.90

Ours 67.3 100.00 100.00 45.8 100.00 99.80

Direction English-Chinese English-German

Remove 31.5 n/a n/a 25.7 n/a n/a
Split-Inject 57.0 100.00 99.30 50.7 100.00 99.80
XML 61.2 99.85 99.75 52.7 99.80 99.20

Ours 61.5 100.00 99.80 53.6 100.00 99.80

Table 4: Results of the structurally constrained translation task. We highlight the highest score in bold and the
second-highest score with underlines.

4.5 Effect of Data Scale

Figure 4: Effect of data scale. The results are reported
on the English-Chinese validation set.

We vary the amounts of training data to investi-
gate the effect of data scale on our approach. Fig-
ure 4 shows the results. The BLEU score increases
with the data size, while the window overlap score
reaches the highest value when using 10.0M train-
ing examples. When using all the training data,
the 1 - TERm metric achieves the best value. We
find that the exact match accuracy of our method is
maintained at 100%, even with only 0.6M training
examples. This trend implies that our method can
be applied in some low-resource scenarios.

4.6 More Analysis

Due to space limitation, we place a more detailed
analysis of our approach in Appendix, including
the effect of the alignment model, the performance
on more language pairs, and the domain robustness
of our model, which is evaluated on the WMT21
terminology translation task (Alam et al., 2021b)
that lies in the COVID-19 domain.

5 Structurally Constrained Translation

5.1 Setup

Data We conduct our experiments on the dataset
released by Hashimoto et al. (2019), which sup-
ports the translation from English to seven other
languages. We select four languages, including
French, Russian, Chinese, and German. For each
language pair, the training set contains roughly
100K sentence pairs. We report the results on
the validation sets since the test sets are not open-
sourced. We follow Hashimoto et al. (2019) to
use SentencePiece5 to preprocess the data, which
supports user-defined special symbols. The model
type of SentencePiece is set to unigram, and the
vocabulary size is set to 9000. For English-Chinese,
we over-sample the English sentences when learn-
ing the joint tokenizer, since Chinese has more
unique characters than English (Hashimoto et al.,
2019). We did not perform over-sampling for other
language pairs. We register the XML tags and URL
placeholders as user-defined special symbols. In
addition, we also register &amp;, &lt;, and &gt; as
special tokens, following Hashimoto et al. (2019).

5https://github.com/google/sentencepiece
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Model Configuration Since the data scale for
structurally constrained translation is much smaller
than lexically constrained translation, we follow
Hashimoto et al. (2019) to set the width of the
model to 256 and the depth of the model to 6. See
Section B.1 in Appendix for more details.

Baselines We compare our approach with the
following three baselines:

• Remove: removing the markup tags and only
translating the plain text;

• Split-Inject (Al-Anzi et al., 1997): splitting
the input sentence based on the markup tags
and then translating each text fragment inde-
pendently, and finally injecting the tags;

• XML (Hashimoto et al., 2019): directly learn-
ing the NMT model end-to-end using parallel
sentences with XML tags.

Evaluation Metrics We follow Hashimoto et al.
(2019) to use the following metrics:

• BLEU: considering the structure when esti-
mating BLEU score (Papineni et al., 2001);

• Structure Accuracy: utilizing the etree pack-
age to check if the system output is a valid
XML structure (i.e., Correct), and if the out-
put structure exactly matches the structure of
the given reference (i.e., Match).

All the metrics are calculated using the evalua-
tion script released by Hashimoto et al. (2019).

5.2 Main Results
Template Accuracy We firstly examine the ac-
curacy of the generated templates. A generated
template is correct if

• the template is a valid XML structure;

• the template recalls all the markup tags of the
input sentence.

The template accuracy of our method is 100% in
all the four language pairs. Similar to lexically con-
strained translation, the model may omit some free
token nonterminals (i.e., Yn) when generating the
derivation f , of which the ratios are 0.4%, 0.6%,
0.1%, 0.9% in English-French, English-Russian,
English-Chinese, English-German, respectively.
We use empty strings for the omitted nonterminals
when reconstructing the output sentence.

Translation Performance Table 4 shows the re-
sults of all the involved methods. Our approach can
improve the BLEU score over the three baselines,
and the structure correctness is 100%. Although
Split-Inject can also guarantee the correctness of
the output, its BLEU score is much lower, which
is potentially caused by the reason that some frag-
ments are translated without essential context. The
structure match accuracy with respect to the given
reference is not necessarily 100%, since the order
of markup tags can be diverse due to the variety
of natural language. See Table 9 in Appendix for
some translation examples.

6 Conclusion

In this work, we propose a template-based frame-
work for constrained translation and apply the
framework to two specific tasks, which are lexically
and structurally constrained translation. Our moti-
vation is to decompose the generation of the whole
sequence into the arrangement of constraints and
the generation of free tokens, which can be learned
through a sequence-to-sequence framework. Ex-
periments demonstrate that the proposed method
can achieve high translation quality and match ac-
curacy simultaneously and our inference speed is
comparable with unconstrained NMT baselines.

Limitations

A limitation of this work is that our method can
not cope with one-to-many constraints (e.g., ⟨bank,
河岸|银行⟩). Moreover, we only validate the pro-
posed template-based framework in machine trans-
lation tasks. However, constrained sequence gen-
eration is vital in many other NLP tasks, such as
table-to-text generation (Parikh et al., 2020), text
summarization (Liu et al., 2018), and text genera-
tion (Dathathri et al., 2020). In the future, we will
apply the proposed method to more constrained
sequence generation tasks.
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A Supplementary Material for Lexically
Constrained Translation

A.1 More Details on Data

For the lexically constrained translation task, Chi-
nese sentences are segmented by Jieba6, while
English and German sentences are tokenized using
Moses (Koehn et al., 2007). The tokenized sen-
tences are then processed by BPE (Sennrich et al.,
2016) with 32K merge operations for both the two
language pairs. We detokenize the model outputs
before calculating the sacreBLEU.

A.2 More Details on Model

We adopt Transformer (Vaswani et al., 2017) as
our NMT model. For English-Chinese, we use the
base model, whose depth is 6, and the width is
512. For English-German, we use the big model,
whose depth is 6, and the width is 1024. The base
and big models are optimized using the correspond-
ing learning schedules introduced in Vaswani et al.
(2017). We train base models for 200K iterations
using 4 NVIDIA V100 GPUs and train big models
for 300K iterations using 8 NVIDIA V100 GPUs.
Each mini-batch contains approximately 32K to-
kens in total. All the models are optimized using
Adam (Kingma and Ba, 2015), with β1 = 0.9,
β2 = 0.98 and ϵ = 10−9. In all experiments, both
the dropout rate and the label smoothing penalty
are set to 0.1. The beam size is set to 4.

A.3 Effect of Alignment Model

In this work, we use an alignment model to produce
word alignments for the training set, which is then
used for phrase table extraction. By default, we use
all the parallel data in the training set to train the
alignment model, using the fast-align toolkit. To
better understand the effect of the alignment model,
we replace the default alignment model with a
weaker one that is trained using only 0.1M sen-
tence pairs. Table 5 shows the result, from which
we find that using the weaker word alignment can
negatively affect the BLEU score. However, the
exact match accuracy is still 100%, and changes in
the other two metrics are modest.

A.4 Domain Robustness

Domain robustness is about the generalization
of machine learning models to unseen test do-
mains (Müller et al., 2020). In our experiments,

6https://github.com/fxshy/jieba

# Sent. BLEU Exact Window 1-TERmMatch Overlap

0.1M 37.5 100.0 32.7 37.5
20.6M 38.2 100.0 32.9 37.6

Table 5: Effect of the alignment model on the English-
Chinese validation set. “# Sent.” means the number of
sentence pairs used to train the alignment model.

Method BLEU Exa. Win. 1 - T.mMat. Ove.

Vanilla 37.7 58.1 19.4 37.9

Placeholder 38.5 98.9 24.4 38.8
VDBA 38.0 100.0 24.3 39.1
Replace 38.4 87.3 24.5 39.7
CDAlign 38.6 89.3 24.0 40.5
TextInfill 38.7 97.0 23.2 38.4

Ours 39.6 100.0 26.3 41.3

Table 6: Results on the English-Chinese test set of the
WMT21 terminology translation.

all the involved models are trained in the news
domain. We evaluate the domain robustness of
these methods on the WMT21 terminology trans-
lation task (Alam et al., 2021b)7 , which lies in
the COVID-19 domain. Since this task does not
support English-German translation, we only con-
duct this experiment on English-Chinese. In this
test set, the maximum number of constraints is 12.
We thus modify the phrase extraction script to in-
crease the maximum number of constraints from
3 to 12, and then re-train both the baselines and
our models. Note that we only change the number
of constraints, while the training domain is still
news. Since the open-sourced implementation of
AttnVector (Wang et al., 2022)8 does not support
more than 3 constraints, we omit this baseline in
this experiment. The test set of the WMT21 ter-
minology translation task also contains some con-
straints that consist of more than one target term
(i.e., one-to-many constraints). We only select the
one that appear in the reference as our constraint.
We leave it to future work to extend the current
framework for one-to-many constraints.

Table 6 provides the results on the COVID-19
domain, where our approach performs best across
all the four evaluation metrics. VDBA (Hu et al.,
2019) and our method can both maintain the exact
match accuracy, while the other three baselines

7https://www.statmt.org/wmt21/
terminology-task.html

8https://github.com/shuo-git/VecConstNMT
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Method BLEU Exa. Win. 1 - T.mMat. Ove.

Chinese-English

Vanilla 23.3 17.6 10.4 36.6

AttnVector 25.9 95.5 35.5 42.1
TextInfill 25.0 100.0 33.3 39.0

Ours 26.7 100.0 37.3 45.1

German-English

Vanilla 32.4 9.5 7.3 45.8

AttnVector 37.8 91.4 36.4 53.3
TextInfill 37.2 100.0 37.1 51.4

Ours 38.8 100.0 39.7 53.4

Table 7: Results of the lexically constrained translation
task in Chinese-English and German-English.

achieve much lower exact match accuracy due to
the domain shift. However, the BLEU score of
VDBA is lower than other constrained translation
approaches, while our method can also achieve the
best BLEU score. The exact match accuracy of
TextInfill (Xiao et al., 2022) is lower than 100%
because sometimes the model can not generate all
the slots within the length limitation. The results
indicate that our approach can better cope with
constraints coming from unseen domains.

A.5 X-English Translation

We also conduct experiments on X-English transla-
tion directions (i.e., Chinese-English and German-
English). Due to the limitation of computational
resources, we only train the two most recent base-
lines: AttnVector (Wang et al., 2022) and TextIn-
fill (Xiao et al., 2022). Moreover, AttnVector and
TextInfill achieve the best BLEU score and exact
match accuracy, excluding our approach, respec-
tively. As shown in Table 7, we find that our ap-
proach performs well in both Chinese-English and
German-English, achieving 100% exact match ac-
curacy and a better BLEU score.

A.6 Case Study

As mentioned in Section 4.2, our approach out-
performs the baselines in the lexically constrained
translation task. To better understand the differ-
ence between our approach and some representa-
tive baselines, we list some examples in Table 8.

B Supplementary Material for
Structurally Constrained Translation

B.1 More Details on Model
All the models are trained for 40K iterations in
all the four translation directions. We adopt the
cosine learning rate schedule presented in Wu et al.
(2019), but we set the maximum learning rate to
7×10−4 and the warmup step to 8K. The period of
the cosine function is set to 32K, which means that
the learning rate decays into the minimum value at
the end of the training. Both the dropout rate and
the label smoothing penalty are set to 0.2. Each
mini-batch consists of approximately 32k tokens
in total. We use Adam (Kingma and Ba, 2015) for
model optimization, with β1 = 0.9, β2 = 0.98 and
ϵ = 10−9. We also set the weight decay coefficient
to 10−3. Both the baseline models and our models
are trained using the same hyperparameters.

B.2 Case Study
We list some translation examples in Table 9 to
provide a detailed understanding of our work. The
examples demonstrate that our approach can effec-
tively cope with structured inputs.
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Constraints ⟨guests ,来宾 ⟩; ⟨culinary culture ,食品文化 ⟩; ⟨Chinese-style ,中式 ⟩

Source
Wang Kaiwen , Chinese ambassador to Latvia , introduced to the guests a few major styles of cooking in Chinese
gourmet foods and expressed his hope that through tasting Chinese-style gourmet foods more will be learned
about China and Chinese culinary culture.

Reference 中国驻拉脱维亚大使王开文向来宾们介绍了中国美食的几大菜系,表示希望通过品尝中式美味食品更
多了解中国和中国食品文化。

AttnVector 中国驻拉托维亚大使王开文向来宾介绍了中国美食食品的几种主要烹饪方式,并表示希望通过品尝中
式美食,更多地了解中国和中国的文化。

TextInfill 中国驻拉脱维亚大使王开文向来宾介绍了几种主要的中国美食食品文化 ,并表示希望通过品尝中式
美食,能够了解更多关于中国和中国烹饪文化的知识。

Ours 中国驻拉脱维亚大使王开文向来宾介绍了中国美食的几种主要烹饪风格,并表示希望通过品尝中式美
食,更多地了解中国和中国的食品文化。

Constraints ⟨Italian engineer,义大利工程师⟩; ⟨Gidzenko,吉曾柯⟩; ⟨Shuttleworth,夏特沃斯⟩
Source Returning together with Shuttleworth to earth are the Russian spacecraft commander Gidzenko and the Italian

engineer Vittori who entered space with him.

Reference 与夏特沃斯一同返回地球的,是这次和他一起进入太空的俄罗斯太空船指挥官吉曾柯与义大利工
程师维托利。

AttnVector 吉曾柯和义大利工程师维托利与夏特沃斯一同返回地球,他们一同进入太空。

TextInfill 俄罗斯太空船指挥官吉登科(Gidzenko)和义大利工程师吉曾柯 (Vittori)与夏特沃斯一起重返地球。

Ours 与夏特沃斯一起返回地球的是俄罗斯航天器指挥官吉曾柯和与他一同进入太空的义大利工程师
维托里。

Table 8: Examples for lexically constrained translation. For clarity, we only list the results of two representative
baselines. We choose AttnVector (Wang et al., 2022) and TextInfill (Xiao et al., 2022) since they achieve the best
BLEU score and the highest exact match accuracy, respectively, excluding our approach. In the first example,
AttnVector omits the target constraint食品文化 in its output, while both TextInfill and our approach can generate
all the three constraints. In the second example, TextInfill places the constraint吉曾柯 in the wrong context, while
our approach outputs a better result.
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Source ... <ph> Each dashboard can have up to <ph> 3 </ph> filters. Contact <ph> Salesforce </ph> to increase the
filter options limit in <ph> Salesforce Classic </ph> . A maximum of <ph> 50 </ph> filter options is possible. </ph>

Reference
... <ph> Chaque tableau de bord peut inclure jusqu’á <ph> 3 </ph> filtres. Pour augmenter les limitations des options
de filtrage dans <ph> Salesforce Classic </ph> , contactez <ph> Salesforce </ph> . <ph> 50 </ph> options
defiltre sont possibles au maximum. </ph>

Split-Inject
... <ph> Chaque tableau de bord peut avoir jusqu’á <ph> 3 </ph> filtres. Contact <ph> Salesforce </ph> pour
accroître la limitation des options de filtrage <ph> Salesforce Classic </ph> . maximum d’un maximum <ph> 50
</ph> Les options de filtrage sont possibles. </ph> L

XML
... <ph> Chaque tableau de bord peut avoir jusqu’á <ph> 3 </ph> filtres. Pour augmenter la limitation en options de
filtrage dans <ph> Salesforce Classic </ph> , chaque filtre peut inclure jusqu’á <ph> 50 </ph> options de filtrage.
</ph>

Ours
... <ph> Chaque tableau de bord peut avoir jusqu’á <ph> 3 </ph> filtres. Contactez <ph> Salesforce </ph>
pour augmenter les options de limitation de filtrage dans <ph> Salesforce Classic </ph> . Un maximum de <ph> 50
</ph> options de filtrage est possible. </ph>

Source
Each <ph> Event Monitoring app </ph> user needs an <ph> Event Monitoring Analytics Apps </ph>
permission set license. The <ph> Event Monitoring Analytics Apps </ph> permission set license enables
the following permissions.

Reference
Chaque utilisateur de l’ <ph> application Event Monitoring </ph> doit disposer d’une licence d’ensemble
d’autorisations <ph> Event Monitoring Analytics Apps </ph> . La licence d’ensemble d’autorisations
<ph> Event Monitoring Analytics Apps </ph> accorde les autorisations ci-dessous.

Split-Inject
Chaque <ph> Application Event Monitoring </ph> utilisateur doit avoir un utilisateur <ph> Applications Event
Monitoring Analytics </ph> Licence d’ensemble d’autorisations. <ph> Applications Event Monitoring
Analytics </ph> La licence d’ensemble d’autorisations active les autorisations ci-dessous.

XML
Chaque utilisateur de l’ <ph> application Event Monitoring </ph> doit disposer d’une licence d’ensemble
d’autorisations <ph> Event Monitoring Analytics Apps </ph> . La licence d’ensemble d’autorisations
<ph> Event Monitoring Analytics Apps </ph> active les autorisations ci-dessous.

Ours
Chaque utilisateur de l’ <ph> application Event Monitoring </ph> doit disposer d’une licence d’ensemble
d’autorisations <ph> Event Monitoring Analytics Apps </ph> . La licence d’ensemble d’autorisations
<ph> Event Monitoring Analytics Apps </ph> active les autorisations suivantes.

Table 9: Examples for structurally constrained translation. We only highlight some text fragments wrapped by
markup tags to show the difference between the involved methods. In the first example, XML (Hashimoto et al.,
2019) omits the fragment <ph> Salesforce </ph>, while Split-Inject and our method recall all the markup tags of the
source sentence. In the second example, the colored contents are mistranslated by Split-Inject, which is potentially
caused by the lack of context when translating these fragments.
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