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Abstract

There is a growing body of work in recent years
to develop pre-trained language models (PLMs)
for the Arabic language. This work addresses
two major problems in existing Arabic PLMs
that limit the progress of the Arabic NLU and
NLG fields. First, existing Arabic PLMs are
not well-explored and their pre-training can be
improved significantly using a more methodical
approach. Second, there is a lack of systematic
and reproducible evaluation of these models in
the literature. We revisit both the pre-training
and evaluation of Arabic PLMs. In terms of
pre-training, we explore the impact of the qual-
ity of the pretraining data, the size of the model
and the incorporation of character-level infor-
mation to Arabic PLMs. As a result, we release
three new Arabic BERT-style models (JABER,
Char-JABER, and SABER), and two T5-style
models (AT5S and AT5B). In terms of eval-
uation, we conduct a comprehensive empiri-
cal study to systematically evaluate the perfor-
mance of existing state-of-the-art models on
ALUE, a leaderboard-powered benchmark for
Arabic NLU tasks, and on a subset of Arabic
generative tasks. We show that our models
significantly outperform existing Arabic PLMs
and achieve a new state-of-the-art performance
on both discriminative and generative tasks.

1 Introduction

Pre-trained language models (PLMs) such as
BERT (Devlin et al., 2018), GPT (Radford et al.,
2018), and T5 (Raffel et al., 2019) have become
the default standard architectures for modern natu-
ral language understanding (NLU) systems in both
academic (Kalyan et al., 2021; Min et al., 2021)
and industrial settings (Chakravarti et al., 2020;
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Tunstall et al., 2022; Li et al., 2021). On the evalu-
ation side, the community has widely adopted the
leaderboard paradigm1 as a reliable and fair tool
to track the progress on various NLP tasks (Mehri
et al., 2020; Wang et al., 2018, 2019).

Recent years have seen tremendous efforts to
develop language-specific PLMs (Le et al., 2020;
Chan et al., 2020; Canete et al., 2020; Ulčar and
Robnik-Šikonja, 2020) and leaderboards (Xu et al.,
2020, 2021; Shavrina et al., 2020; Wilie et al.,
2020) for languages other than English. These
language-specific PLMs have proven to be more
accurate than multilingual ones in monolingual
evaluation settings (Martin et al., 2019; Wei et al.,
2019; Safaya et al., 2020). Moreover, creating
high-quality human-curated benchmarks is consid-
ered to be of utmost importance for reliable evalua-
tion (DeYoung et al., 2020; Kiela et al., 2021).

For some high-resource languages like Chinese,
the community has been able to be on par with En-
glish NLU in terms of developing PLMs (Sun et al.,
2019, 2020, 2021; Zeng et al., 2021) and evaluat-
ing them on publicly available leaderboards (Xu
et al., 2020). However, we find that the NLP com-
munity is unfortunately lagging behind for other
languages like Arabic. Despite the wide availabil-
ity of Arabic PLMs (Abdul-Mageed et al., 2021;
Antoun et al., 2020; Nagoudi et al., 2022; Inoue
et al., 2021) and datasets (Zeroual et al., 2019; El-
Khair, 2016; Nagoudi et al., 2020), there are two
major issues that constrain the progress of Arabic
NLU field.

First, we observe that the latest techniques for
improving pre-training (Brown et al., 2020; Clark
et al., 2022; Di Liello et al., 2021) are under-

1We use the same definition of leaderboard as Ethayarajh
and Jurafsky (2020).
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explored in the context of Arabic PLMs. In this
work, we investigate three ways to improve on the
existing Arabic PLMs: quality of the pre-training
data, size of the model, and morphology. We pro-
pose JABER, a BERT-base model pre-trained on
high-quality filtered data, that significantly outper-
forms the best Arabic PLM baseline by 1.5% on
ALUE (Seelawi et al., 2021), a newly proposed
benchmark with a leaderboard for sequence clas-
sification Arabic tasks.2 We also explore two
other variants of JABER and report further gains
in performance: (i) Char-JABER which exploits
character-level information and (ii) SABER which
involves a BERT-large model.

Second, there is a lack of systematic and repro-
ducible evaluation. As a matter of fact, most of the
existing work on Arabic PLMs does not follow the
recommended evaluation protocols (Pineau, 2020;
Chen et al., 2022) which include extensive hyper-
parameter tuning, performing multiple runs on the
development set, and reporting performance on
hidden test sets. To address this issue, we system-
atically compare five popular BERT-based Arabic
PLMs by carefully assessing their performance on
the ALUE leaderboard. We find that the perfor-
mance ranking of models drastically changes when
measured on dev sets as compared to the leader-
board test sets, thereby calling for caution when
comparing models without a leaderboard setting.

Furthermore, we extend our work to T5 encoder-
decoder models and Arabic generative tasks. We
pre-train two T5 small and base models for Arabic:
AT5S and AT5B. AT5B achieves state-of-the-art re-
sults on several generative tasks (Naous et al., 2020;
Ladhak et al., 2020) by outperforming the recently
proposed AraT5-base model (Nagoudi et al., 2022)
both on automatic and human evaluations. We fur-
ther observe that T5-based Arabic PLMs perform
worse than the BERT-based models on the ALUE
benchmark which is in contrast to the powerful per-
formance of T5-models on English language tasks
(Raffel et al., 2019). We conclude with a set of
suggestions and directions to explore for pushing
progress forward in the Arabic NLU community.

2 Related Work

There have been several efforts to improve on the
pre-training paradigm by scaling up the model
size (Lepikhin et al., 2021; Brown et al., 2020)
and data size (Liu et al., 2019), exploring new

2The Arabic equivalent of GLUE (Wang et al., 2018).

pre-training tasks (Di Liello et al., 2021; Panda
et al., 2021) and model architectures (Lan et al.,
2019; Voita et al., 2019), and support for long in-
put sequences (Choromanski et al., 2021; Beltagy
et al., 2020). In this work, we use the original set-
ting of BERT (Devlin et al., 2018) and T5 (Raffel
et al., 2019) models to pre-train our Arabic encoder-
only and encoder-decoder models respectively. The
broader goal is to be fairly and directly comparable
with other existing Arabic PLMs discussed below.

Table 1 shows the configuration used by popular
publicly available Arabic BERT models as well
as those of JABER and SABER. AraBERT (An-
toun et al., 2020) and Arabic-BERT (Safaya et al.,
2020) were amongst the first to pre-train 12-layer
BERT-base models specifically for Arabic. Abdul-
Mageed et al. (2021) proposed two BERT-based
models: ARBERT which is tailored for Modern
Standard Arabic (MSA) NLU tasks and MAR-
BERT dedicated to tasks that include Arabic di-
alects (especially tweets). ARBERT and MAR-
BERT are pre-trained on 61GB and 128GB of MSA
and tweets data respectively. Inoue et al. (2021) go
one step further and pre-train a single BERT-base
model called CAMeLBERT, on 167GB of MSA, di-
alect and classic Arabic data. The major difference
between JABER and these existing Arabic PLMs
is that JABER is pre-trained on a high-quality and
strictly filtered dataset (115GB out of 514GB).

A wide range of methods have been proposed
lately to enrich PLMs with character-level infor-
mation, as it has been shown to be beneficial for
morphologically rich languages like Arabic (Kim
et al., 2016; Gerz et al., 2018; Clark et al., 2022).
Ma et al. (2020) proposed Noisy Language Mod-
eling, a new unsupervised pre-training objective
for learning character representations. Pinter et al.
(2021) proposed their XRayEmb method that in-
volves adding character-level information to exist-
ing PLMs without the need for pretraining them
from scratch. CharacterBERT (El Boukkouri et al.,
2020) uses a character-CNN module to learn repre-
sentations for entire words by consulting the char-
acters of each token, thus avoiding to recourse
to word-pieces (Wu et al., 2016). Our character-
enhanced BERT-base model, Char-JABER, uses a
simple and efficient method to inject character-level
representations alongside the sub-tokens represen-
tations only at the input layer of BERT, with min-
imal additional parameters and no computational
overhead.
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Model Arabic-BERT AraBERT CAMeLBERT ARBERT MARBERT JABER SABER

#Params (w/o emb) 110M (85M) 135M (85M) 108M (85M) 163M (85M) 163M (85M) 135M (85M) 369M (307M)
Vocab Size 32k 64k 30k 100k 100k 64k 64k
Tokenizer WordPiece WordPiece WordPiece WordPiece WordPiece BBPE BBPE
Normalization ✘ ✓ ✓ ✘ ✘ ✓ ✓
Data Filtering ✘ ✘ ✘ ✘ ✘ ✓ ✓
Textual Data Size 95GB 27GB 167GB 61GB 128GB 115GB 115GB
Duplication Factor 3 10 10 - - 3 3
Training epochs 27 27 2 42 36 15 5

Table 1: Configuration of publicly available Arabic BERT models and our JABER and SABER models. AraBERT
and MARBERT did not provide their data duplication factor. Char-JABER has the same characteristics as JABER.

Recent efforts have also been made to develop
benchmarks for Arabic NLU tasks. Abdul-Mageed
et al. (2021) proposed the ARLUE benchmark
which is a collection of 42 discriminative classi-
fication tasks. Nagoudi et al. (2022) proposed the
ARGEN benchmark which consists of 19 datasets
for generative tasks. However, both benchmarks
have certain limitations which make it challeng-
ing to meaningfully evaluate Arabic PLMs. For
many tasks, the authors use their own train-dev-
test splits which are not made publicly available,
as of May 10, 2022. In addition, the access to
some datasets is not available free of cost. Further-
more, none of the tasks include privately-held test
data which is important to ensure that a benchmark
is used fairly (Wang et al., 2018). Therefore, we
adopt the ALUE benchmark (Seelawi et al., 2021)
for evaluating our models on classification tasks
because this benchmark has a public leaderboard
and includes privately-held test sets for many tasks.
For evaluating our Arabic T5 models, we select a
subset of generative tasks from the ARGEN bench-
mark whose results are freely reproducible (see
Section 4.1).

3 Pre-training

3.1 Data Collection and Processing
We collect our pre-training corpus from the follow-
ing four sources:

Common Crawl (CC): We use 10 shards of
Common Crawl3 data from March to De-
cember 2020. After removing non-Arabic
text, this dataset is 444GB in size. Addi-
tionally, we use the monthly shard of CC
from November 2018 provided by the OS-
CAR project (Suárez et al., 2019). We down-
load the unshuffled version (31GB) from Hug-
gingFace Datasets (Lhoest et al., 2021).

3https://commoncrawl.org

NEWS: We use the links provided in the Open
Source International Arabic News Corpus
(Zeroual et al., 2019) to collect 21GB of tex-
tual data from 19 popular Arabic news web-
sites.

EL-KHAIR: We use the 1.5 billion words Arabic
Corpus (El-Khair, 2016) which is a collection
of newspaper articles published by 10 Arabic
news sources between 2002-2014.

WIKI: We use the Arabic Wikipedia dump4 from
June 2021 and extract the text of articles using
WikiExtractor (Attardi, 2015).

Recent studies have highlighted the importance
of cleaning up raw pre-training data for achieving
better performance on downstream tasks (Raffel
et al., 2019; Brown et al., 2020). We developed a
set of heuristics for cleaning our Arabic corpora
that is able to filter out gibberish, noisy and dupli-
cated texts (see Appendix A.1).

Source Original Clean

CC 475GB 87GB (18%)
NEWS 21GB 14GB (67%)
EL-KHAIR 16GB 13GB (82%)
WIKI 1.6GB 1GB (63%)

Total 514GB 115GB (22%)

Table 2: Size of our pre-training corpus before and
after applying the data cleaning methods. Parentheses
indicate the proportion of the remaining data.

Table 2 shows the size of our pre-training cor-
pora before and after data pre-processing. The
final pre-training dataset represents only 22% of
the original corpus and is 115GB in size. Al-
though our approach seemingly filters out a large
proportion of the dataset, our corpus size is com-
parable with other models such as Arabic-BERT

4https://dumps.wikimedia.org/
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Task |Train| |Dev| |Test| Metric |Classes| Domain Lang Seq. Len.

Single-Sentence Classification

MDD 42k 5k 5k F1-macro 26 Travel DIAL 7±3.7
OOLD 7k 1k 1k F1-macro 2 Tweet DIAL 21±13.3
OHSD 7k 1k 1k F1-macro 2 Tweet DIAL 21±13.3
FID 4k - 1k F1-macro 2 Tweet DIAL 23±11.7

Sentence-Pair Classification

MQ2Q 12k - 4k F1-macro 2 Web MSA 13±2.9
XNLI 5k - 3k Accuracy 3 Misc MSA 27±9.6

Multi-label Classification

SEC 2k 600 1k Jaccard 11 Tweet DIAL 18±7.8

Regression

SVREG 1k 138 1k Pearson 1 Tweet DIAL 18±7.9

Table 3: Task descriptions and statistics of the ALUE benchmark. Test sets in bold use labels that are publicly
available. The average sequence length and standard deviations are computed based on the word count of the
tokenized text of the training set.

(95GB) and MARBERT (128GB). Moreover, as
we will discuss in Section 4, our models are able
to significantly outperform other models that used
light pre-processing (Safaya et al., 2020; Abdul-
Mageed et al., 2021). We also utilise the Arabic
text-normalization procedure of AraBERT5 which
involves removing emojis, tashkeel, tatweel, and
HTML markup (Antoun et al., 2020).

3.2 Our Models

We pre-train both BERT- and T5-style models.
JABER and SABER stand for Junior (12-layer)
and Senior (24-layer) Arabic BERT models re-
spectively. They follow the default configura-
tion of BERT-base and BERT-large (Devlin et al.,
2018) respectively. We also enhance JABER with
character-level representations at the input layer,
which we refer to as the Char-JABER model.

For Char-JABER, each word is represented as
a sequence of characters, and we use a m-layer
CNN encoder (Chiu and Nichols, 2016; Lee et al.,
2018) to obtain a continuous vector of character-
level representation for each word. The final input
representation is obtained by adding those vectors
to the original BERT input representations (token,
segment, and position). Note that all sub-tokens
of the same word share the same character-level
representation of that word.

AT5B and AT5S use the same encoder-decoder
architecture and configuration of T5-base and T5-
small (Raffel et al., 2019) respectively. AT5B is di-

5https://github.com/aub-mind/arabert/blob/
master/preprocess.py

rectly comparable with AraT5-base (Nagoudi et al.,
2022), the state-of-the-art model for Arabic genera-
tive tasks. The configurations and implementation
details of our models are listed in Appendix A.2
and A.3.

4 Experimental Protocol

4.1 Datasets

We evaluate all models on the newly proposed
ALUE benchmark (Seelawi et al., 2021). ALUE
is a collection of eight Arabic NLU tasks: four
single-sentence, two sentence-pair, and one multi-
label classification task, as well as one regression
task. Five of the eight ALUE tasks are sourced
from Twitter data whereas six tasks involve dialec-
tal Arabic. We refer the readers to Seelawi et al.
(2021) for a detailed description of each task.

The final score is computed as the unweighted
average over those tasks. ALUE is powered by a
leaderboard6 with privately-held test sets and we
present a brief summary of the ALUE tasks in Ta-
ble 3.

We note three potential limitations with the
ALUE benchmark: (1) the size of training data and
average sequence lengths across tasks are smaller
when compared with GLUE (Wang et al., 2018),
(2) the test set labels are public for three tasks: FID,
XNLI, and MDD, and (3) development sets are not
available for three tasks: FID, XNLI and MQ2Q.

Following Seelawi et al. (2021), we use the avail-
able test set as the development set for FID and

6https://www.alue.org/leaderboard
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XNLI. In order to create the development set for
MQ2Q, we use a simple approach: (i) we convert
the development set of another task called QQP7

from English to Arabic using an online translation
service, (ii) we pick a random sample of 2k positive
and 2k negative instances. We only pick sentence
pairs that do not contain any English letters to cre-
ate a high-quality development set.

Unfortunately, there is no equivalent of the
ALUE benchmark for Arabic generative tasks
which has a leaderboard with a fixed train/dev/test
split and privately-held test set. Therefore, we
evaluate encoder-decoder models on a selected
set of generative tasks from the ARGEN bench-
mark (Nagoudi et al., 2022): Text Summarization
(TS), Question Generation (QG), and Question
Answering (QA), where the latter is treated as a
sequence-to-sequence generative task. In addition,
we experiment on a single-turn dialogue task using
the Empathetic Dialogue (EMD) dataset (Naous
et al., 2021). See Appendix B.1 for a detailed de-
scription of the datasets, splits, and evaluation met-
rics.

4.2 Baselines

On one hand, we compare our JABER, Char-
JABER and SABER models with the popular Ara-
bic PLMs: Arabic-BERT (Safaya et al., 2020),
AraBERT (Antoun et al., 2020), CAMeLBERT (In-
oue et al., 2021), ARBERT and MARBERT
(Abdul-Mageed et al., 2021). On the other hand, we
evaluate our AT5S and AT5B models against the re-
cently proposed AraT5-base (Nagoudi et al., 2022)
and AraB2B (Naous et al., 2021) models. The lat-
ter is an encoder-decoder model initialized with the
weights of AraBERT. CAMeLBERT and AraT5-
base refer to CAMeLBERT-MIX and AraT5 mod-
els in (Inoue et al., 2021) and (Nagoudi et al., 2022)
respectively. These models were pretrained on a
mix of MSA and tweets (the largest possible cor-
pus) and achieve the best overall performance in
their respective papers.

4.3 Implementation Details

In order to ensure a fair comparison amongst ex-
isting models, we define a systematic evaluation
protocol following the recommendations of Pineau
et al. (2021). The following four-step approach is
applied to every model (including the baselines) for

7https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question

each of the ALUE and generative tasks: (1) We con-
duct extensive hyperparameter-search experiments
(e.g. 60 for BERT models) to find the best combi-
nation of batch size, learning rate, and dropout rate;
(2) We use the best found hyperparameter-setting to
perform 5 runs with different random seeds; (3) We
report the average and the standard deviation on the
development set; (4) We use the best-performing
models of the development set experiments for the
ALUE leaderboard submissions, as well as for re-
porting the test-set scores of the encoder-decoder
models.

For BERT-style models, we use the
AdamW (Loshchilov and Hutter, 2017) opti-
mizer with a learning rate decay. Fixing the
number of epochs to 30, we perform grid search
with multiple runs to find the best hyperparameters:
learning rate from {7e-6, 2e-5, 5e-5}, batch-size
from {8, 16, 32, 64, 128}, hidden dropout from
{0.1, 0.2, 0.3, 0.4}. For encoder-decoder models,
we use the Adafactor (Shazeer and Stern, 2018)
with inverse square root decay and pick a learning
rate from {1e-3, 1e-4, 1e-5}. The fine-tuning
code is based on the PyTorch (Paszke et al., 2019)
version of the Transformers library (Wolf et al.,
2020). We run all experiments on a single NVIDIA
Tesla V100 GPU. The best hyperparameters for
the generative and ALUE tasks can be found in
Table 12 and Table 13 respectively (Appendix B).

5 Results of BERT-Style Models

5.1 ALUE Dev

The performance of all BERT-based models in-
cluding the baselines on the development set of
ALUE tasks is presented in Table 4. We report
the average and standard deviation of 5 runs with
different random seeds. We observe that the vari-
ance in performances of the multiple runs is low
and is approximately the same on average for all
BERT-base models, with the exception of OHSD
where all models exhibit higher variance. Inter-
estingly, Char-JABER and SABER report a lower
variance across the five runs when compared to the
BERT-base models.

It can be seen that Arabic-BERT and AraBERT
have comparable performances (average score of
72.4% and 72.6% respectively). This could be due
to the similar size of training data used by both
models: Arabic-BERT was pre-trained on 95GB
of text data that was duplicated 3 times (285GB),
while AraBERT was pre-trained on 27GB dupli-
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Model MQ2Q* MDD SVREG SEC FID OOLD XNLI OHSD Avg.

Baselines

CAMeLBERT 68.9±1.1 62.9±0.1 86.7±0.1 45.4±0.5 84.9±0.6 91.3±0.4 55.7±1.2 81.1±0.7 72.1±0.6
Arabic-BERT 73.3±0.6 61.9±0.2 83.6±0.8 42.4±0.4 83.9±0.6 88.8±0.5 66.0±0.6 79.3±1.0 72.4±0.6
AraBERT 73.5±0.5 61.1±0.3 82.3±0.9 42.2±0.6 85.2±0.2 89.7±0.4 67.2±0.4 79.9±1.8 72.6±0.6
MARBERT 69.1±0.9 63.2±0.3 88.0±0.4 47.6±0.9 84.7±0.4 91.8±0.3 63.3±0.7 83.8±1.4 73.9±0.7
ARBERT 74.7±0.1 62.5±0.2 83.5±0.6 43.9±0.6 85.3±0.3 90.5±0.5 70.8±0.5 81.9±2.0 74.1±0.6

Ours

JABER 75.1±0.3 65.7±0.3 87.4±0.7 46.8±0.8 84.8±0.3 92.2±0.5 72.4±0.7 85.0±1.6 76.2±0.7
Char-JABER 76.8±0.2 67.3±0.2 87.5±0.3 47.8±0.4 85.7±0.2 93.3±0.1 72.7±0.3 86.4±0.5 77.2±0.3
SABER 77.7±0.4 67.4±0.2 89.3±0.3 49.0±0.5 86.1±0.3 93.4±0.4 75.9±0.3 88.9±0.3 78.5±0.3

Table 4: DEV performances and standard deviations over 5 runs on the ALUE benchmark. Bold entries describe the
best results among all models, while underlined entries show best results among BERT-base models. * indicates
that the results are on our own MQ2Q dev set.

cated 10 times (270GB). While CAMeLBERT out-
performs the other baseline models on certain tasks,
it achieves the lowest average score of 72.1. This
is due to its poor performance on MQ2Q (68.9)
and XNLI (55.7), both of which are sentence-pair
classification tasks and involve MSA data.

ARBERT achieves the highest average score of
74.1% closely followed by MARBERT (73.9%).
MARBERT was pre-trained on a large corpus of
Arabic tweets and we observe that it performs well
on tasks that involve tweet-data. The opposite holds
true for ARBERT.

Our JABER model significantly outperforms the
best existing baseline model (ARBERT) by 2.3%
on the average ALUE score. While MARBERT
performs marginally better on the SVREG and
SEC tasks, JABER significantly outperforms MAR-
BERT on all other tasks, particularly the MSA tasks
– XNLI and MQ2Q – where it achieves gains of
+9.1% and +6.0% respectively.

We see further improvements when the JABER
model is enhanced with character representations at
the input level. Char-JABER performs better than
JABER on all ALUE tasks resulting in a one point
jump in the average ALUE score. Moreover, it can
be seen that Char-JABER outperforms MARBERT
on all tasks (except on SVREG) that involve tweets
and dialect data, despite not being pre-trained on
tweet corpora.

Character-level information can be crucial for
morphologically rich languages like Arabic, where
many less frequent dialect words share the same
root and meaning as more frequent MSA words.
We integrate this information in an unsupervised
manner into both pretraining and fine-tuning stages.
We do so without adding any computational over-

head and without requiring massive amounts of
Twitter data (unlike MARBERT) which can be dif-
ficult to obtain for a large section of the research
community.

As expected, our large SABER model outper-
forms all the BERT-base models on all ALUE tasks
(including MARBERT on SVREG), achieving a
2.3% and 1.3% improvements on ALUE average
over JABER and Char-JABER respectively. In our
study, it seems that increasing the model capacity
is more important than adding character level infor-
mation for modelling low frequent dialect words.
Nevertheless, combining both techniques may fur-
ther improve performance, which we leave for fu-
ture work.

5.2 ALUE Test

Table 5 shows the test performance of all BERT-
based models on the ALUE leaderboard. The top
two rows correspond to the baselines provided by
the ALUE authors and the values are directly taken
from the leaderboard. The middle and the bottom
sections display the performances of our competi-
tors’ baselines and our own models respectively.
We keep the baseline results private8 since we are
not the owners of these models. Figure 1 in Ap-
pendix includes a screenshot of the leaderboard
from June 2022.

Interestingly, we observe that our private sub-
mission of the Arabic-BERT model achieves an
average ALUE score of 69.3% which is 2.2 per-
centage points higher than the one available on the
ALUE leaderboard. This can directly be attributed
to our extensive fine-tuning protocol (described

8We contacted the owners of the ALUE leaderboard to
submit the other baseline models in private mode.
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Model MQ2Q MDD SVREG SEC FID OOLD XNLI OHSD Avg. DIAG

ALUE Baselines

mBERT 83.2 61.3 33.9 14.0 81.6 80.3 63.1 70.5 61.0 19.0
Arabic-BERT 85.7 59.7 55.1 25.1 82.2 89.5 61.0 78.7 67.1 19.6

Our Private Submissions of Baselines

AraBERT 89.2 58.9 56.3 24.5 85.5 88.9 67.4 76.8 68.4 23.5
Arabic-BERT 89.7 59.7 58.0 26.5 84.3 89.1 67.0 80.1 69.3 19.0
CAMeLBERT 89.4 61.3 69.5 30.3 85.5 90.3 56.1 80.6 70.4 11.8
ARBERT 89.3 61.2 66.8 30.3 85.4 89.5 70.7 78.2 71.4 24.3
MARBERT 83.3 61.9 75.9 36.0 85.3 92.1 64.3 78.9 72.2 12.3

Ours

JABER 93.1 64.1 70.9 31.7 85.3 91.4 73.4 79.6 73.7 24.4
Char-JABER 92.0 66.1 74.5 34.7 86.0 92.3 73.1 83.5 75.3 26.7
SABER 93.3 66.5 79.2 38.8 86.5 93.4 76.3 84.1 77.3 26.2

Table 5: Leaderboard test results (as of 24/06/2022) of experiments on ALUE tasks and their diagnostic dataset
(DIAG). Bold entries describe the best results among all models, while underlined entries show best results among
BERT-base models.

in Section 4.3). Specifically, the proper tuning of
the hyperparameters for our version of the Arabic-
BERT model resulted in an overall improvement.

Surprisingly, we also observe that the relative
ranks of the baseline models have changed drasti-
cally as compared to the dev set (Table 4). CAMeL-
BERT had the lowest average ALUE score of
72.1% on the dev set, but it now outperforms
AraBERT and Arabic-BERT on the leaderboard
test-set. Similarly, MARBERT outperforms AR-
BERT by 0.8% on the leaderboard while being
0.3% behind on the dev set. This happens despite
our extensive hyperparameter tuning protocol and
the fact that we perform multiple runs. This ob-
servation underscores the importance of having
separate privately-held test sets to determine the
actual state-of-the-art rankings for Arabic PLMs.

We observe that our models consistently rank at
the top for both ALUE dev and test sets. JABER
outperforms all other existing Arabic language
models achieving an average score of 73.7%. Char-
JABER outperforms JABER with a 1.6% increase
in the average ALUE score. SABER expectedly
further boosts the average score by 2% compared
to JABER, achieving the new state-of-the-art score
of 77.3% on the ALUE benchmark.

It is interesting to note that Char-JABER is
able to outperform the much larger SABER model
(by 0.5%) on ALUE’s diagnostic data (DIAG), a
dataset which is designed to capture the complex
linguistic phenomena of Arabic (Seelawi et al.,
2021). Moreover, it performs better than JABER

on all the ALUE tasks (except MQ2Q and XNLI).
Therefore, we argue that augmenting language
models with character information is a worthy pur-
suit for Arabic NLU.

6 Results of Encoder-Decoder Models

Table 6 shows the performance of our T5 models
(AT5S and AT5B) and AraT5-base (Nagoudi et al.,
2022) on the development split of the ALUE tasks.
Expectedly, the smaller variant AT5S achieves a
lower average score. The performance of our AT5B
model is very similar to that of AraT5-base with
both models slightly outperforming each other on
four tasks each.

Task name AT5S AT5B AraT5-base

MQ2Q⋆ 73.0±0.1 73.7±0.1 70.5±2.1
OOLD 88.4±0.2 90.0±0.4 90.5±0.4
OHSD 81.0±1.8 81.2±2.1 78.3±1.4
SVREG 75.6±1.6 78.1±2.4 80.8±1.3
SEC 41.3±0.5 43.8±0.7 44.0±0.6
FID 82.1±0.6 83.1±0.5 82.3±0.4
XNLI 67.9±0.3 72.2±0.4 72.5±1.5
MDD 63.1±0.3 64.7±0.2 63.6±0.2

Avg 71.5±0.7 73.3±0.9 73.0±1.0

Table 6: ALUE scores of Arabic T5-style models on the
development set. Results on our own MQ2Q dev set are
marked by a ⋆.

Moreover, comparing Table 4 and Table 6, we
observe that T5-style Arabic PLMs perform worse
than the BERT-based models on the same ALUE
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benchmark. This is in contrast to the powerful per-
formance of T5-models on English language tasks
(Raffel et al., 2019). This observation requires fur-
ther investigations, and therefore we did not submit
our T5 models to the ALUE leaderboard.

Dev Test
Model EM F1 EM F1

AT5S 36.8±0.4 57.5±0.3 29.2 65.1
AT5B 40.8±0.7 61.6±1.1 31.6 67.2
AraT5-base 40.2±0.4 61.4±0.8 31.2 65.7
AraB2B 27.3±2.5 47.9±1.6 22.7 54.0

Table 7: F1-score and Exact Match (EM) of T5-style
models on the Question Answering task.

QG EMD
Model Dev Test Dev Test

AT5S 7.8±0.4 15.6 2.1±0.1 1.9
AT5B 8.1±0.1 17.0 2.3±0.1 2.0
AraT5-base 6.7±0.1 13.5 2.0±0.0 1.8
AraB2B 4.7±0.3 11.7 2.0±0.0 1.8

Table 8: BLEU score of T5-style models on the Ques-
tion Generation and Empathetic Dialogue tasks.

Rouge1 Rouge2 RougeL

WikiLingua Dev

AT5S 24.3±1.3 9.5±0.6 21.6±1.0
AT5B 26.1±2.8 10.5±1.6 23.2±2.5
AraT5-base 25.0±0.2 10.0±0.0 22.4±0.2

WikiLingua Test

AT5S 25.2 9.9 22.4
AT5B 27.8 11.5 24.8
AraT5-base 25.1 10.2 22.5

EASC Test

AT5S 11.3 2.7 10.1
AT5B 12.6 3.5 11.3
AraT5-base 10.7 2.7 9.3

Table 9: T5-style models’ performances on the Text
Summarization task.

In order to perform a more meaningful evalu-
ation, we also evaluate the Arabic T5 models on
four other tasks: Empathetic Dialogue (EMD), Text
Summarization (TS), Question Answering (QA)
and Question Generation (QG). We present the per-
formances of all T5-based models on QA in Table 7,
on QG and EMD in Table 8 and on TS in Table 9.
Note that we do not experiment with AraB2B on

TS as BERT model is constrained by a maximum
input length of 512.

Our AT5B model significantly outperforms
AraT5-base on Question Generation and WikiLin-
gua summarization tasks by 3.5 points and 2.7
points respectively. On the remaining QA and
EMD tasks, the performance of the two mod-
els is similar with our AT5B model performing
marginally better. Moreover, we observe in Table 8
that even our smaller AT5S model is able to outper-
form the bigger AraT5-base on QG and EMD tasks
while achieving comparable scores on TS and QA
tasks. This can be very useful for the community
for operating in a low latency setting.

Finally, we observe from Table 7 and Table 8
that the performance of AraB2B model is worse
than all other T5-based models. We believe that the
BERT2BERT approach for Arabic response gen-
eration adopted in (Naous et al., 2021) is not well
suited for such generation tasks, and it is preferable
to pre-train the model from scratch compared to
initializing the encoder-decoder architecture with
pre-trained weights.

Acceptable Best

Q
G

AT5B 68%±10 56%±12
AraT5-base 37%±11 19%±14
AraB2B 40%±12 25%±02

E
M

D AT5B 53%±08 50%±07
AraT5-base 50%±12 37%±10
AraB2B 27%±04 13%±05

T
S AT5B 74%±08 66%±05

AraT5-base 61%±12 34%±04

Table 10: Human evaluation performances on 3 genera-
tive tasks.

The ideal way to measure performance on lan-
guage generation tasks is to ask humans to evaluate
the models’ outputs (Sai et al., 2022). Thus, we
evaluate our T5-based and AraB2B models on the
three generation tasks of QG, EMD and TS us-
ing human annotators. Each of the three models’
outputs was evaluated by four annotators. We per-
form both absolute and relative comparison of the
three models. Specifically, we asked the annotators
to label a hundred outputs from each model and
each task for two scenarios: (1) Acceptable: each
model output is labeled for whether it is acceptable
(not strictly perfect) to the annotator or not, and
(2) Best: where the annotator must pick exactly
one best output out of the three ones. In order to
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mitigate annotation biases, we randomly shuffle,
anonymize and rename the three models’ outputs.

The results of our human evaluation study for
both Acceptable and Best scenarios are presented
in Table 10. First, we assert that the reported values
are reliable as the standard deviation is low (approx-
imately 10%) across all tasks. Second, we observe
that the scores obtained in the human evaluation
study are much higher than what the correspond-
ing BLEU and ROUGE scores reported in Table 8
would suggest. On EMD, for example, our AT5B
model achieves a score of 53% for the Acceptable
scenario as compared to the previously reported
BLEU score of 2.0. This is possible because the
dialogue generated by the model could be convey-
ing the same tone and emotion as the reference
dialogue which led the annotators to mark it as Ac-
ceptable, despite having a low n-gram overlap with
the reference dialogue.

Finally, we can conclude from Table 10 that our
AT5B model was preferred by the annotators for
both scenarios on each of the three tasks. The im-
provement over AraT5-base is considerably large
for QG and TS tasks as compared to the empa-
thetic dialogues task. On EMD, we observe that
only a fraction of all of the models’ responses are
considered acceptable by the annotators. However,
even in that scenario, the annotators pick our AT5B
model as the best-performing one since it is able to
produce the most syntactically correct and coherent
responses. One reason for the overall low perfor-
mance on these tasks is the quality of the datasets
available for Arabic NLP: the data is not originally
in Arabic and the datasets were created via auto-
matic translation from English datasets. Therefore,
in order to make meaningful progress in Arabic
NLP, we argue that the community needs to curate
high-quality datasets dedicatedly for Arabic.

7 Conclusion

In this work, we revisit the pre-training and eval-
uation of Arabic PLMs. We introduced five new
Arabic language models using both BERT- and T5-
style pre-training schemes. Our models outperform
all existing Arabic models on the generative tasks
as well as on the ALUE benchmark, with SABER
setting a new state-of-the-art on ALUE.

In order to accelerate the progress in Ara-
bic NLU, we advocate for the creation of more
leaderboard-based benchmarks with privately-held
evaluation sets that cover a wide array of tasks.

Moreover, we strongly recommend researchers fol-
low a systematic approach similar to the one we
propose when evaluating Arabic models, with ex-
tensive hyperparameter tuning and multiple runs
with different random seeds.

In the future, our research will mainly focus
on scaling up Arabic PLMs to tens (and hun-
dreds) of billions of parameters in an energy-
efficient manner (Du et al., 2021; Chowdh-
ery et al., 2022) as well as scaling up with
high-quality pre-training data (Hoffmann et al.,
2022). Having met all the other conditions in
the Reproducibility Checklist (Pineau, 2020), we
make our source code and models freely avail-
able at https://github.com/huawei-noah/Pretrained-
Language-Model/tree/master/JABER-PyTorch.

Limitations

While we evaluated our models on a diverse set of
classification and generative tasks, there are sev-
eral NLP tasks that were not accounted for in our
study. It would be worthwhile to explore other
tasks such as named-entity recognition (Benajiba
and Rosso, 2007) or coreference resolution (Prad-
han et al., 2012). Also, there are other Arabic
PLMs (Talafha et al., 2020; Lan et al., 2020) that
were not used in our evaluation study. Those mod-
els have been reported to underperform the PLMs
we have considered as baselines in our study. How-
ever, there is a small chance that including them
might change the performance ranking in our eval-
uation.

As the focus of this study is on overall bench-
mark performances, we did not assess the robust-
ness of our models on out-of-domain datasets. Fi-
nally, our study lacks a qualitative exploration of
the datasets and models’ error analyses, which we
leave for future work. In particular, we wish to ex-
plore the impressive performance of Char-JABER
on ALUE’s diagnostic data.

Acknowledgments

We thank Mindspore,9 a new deep learning comput-
ing framework, for the partial support of this work.
We are also thankful to the anonymous reviewers
for their insightful comments.

9https://www.mindspore.cn/

3143

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch
https://www.mindspore.cn/


References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7088–7105, Online. Association for Computational
Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In LREC 2020 Workshop Lan-
guage Resources and Evaluation Conference 11–16
May 2020, page 9.

Giusepppe Attardi. 2015. Wikiextractor. https://
github.com/attardi/wikiextractor.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Yassine Benajiba and Paolo Rosso. 2007. Anersys 2.0:
Conquering the ner task for the arabic language by
combining the maximum entropy with pos-tag infor-
mation. In IICAI, pages 1814–1823.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

José Canete, Gabriel Chaperon, Rodrigo Fuentes, and
Jorge Pérez. 2020. Spanish pre-trained bert model
and evaluation data. PML4DC at ICLR, 2020.

Rishav Chakravarti, Anthony Ferritto, Bhavani Iyer, Lin
Pan, Radu Florian, Salim Roukos, and Avi Sil. 2020.
Towards building a robust industry-scale question
answering system. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics:
Industry Track, pages 90–101, Online. International
Committee on Computational Linguistics.

Branden Chan, Stefan Schweter, and Timo Möller.
2020. German’s next language model. arXiv preprint
arXiv:2010.10906.

Yanran Chen, Jonas Belouadi, and Steffen Eger. 2022.
Reproducibility issues for bert-based evaluation met-
rics. arXiv preprint arXiv:2204.00004.

Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. Trans.
Assoc. Comput. Linguistics, 4:357–370.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In Interna-
tional Conference on Learning Representations.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Trans. Assoc. Comput. Linguistics, 10:73–91.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark
to evaluate rationalized NLP models. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4443–4458. Association for
Computational Linguistics.

Luca Di Liello, Matteo Gabburo, and Alessandro Mos-
chitti. 2021. Efficient pre-training objectives for
transformers.

Nan Du, Yanping Huang, Andrew M. Dai, Simon
Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat,
Barret Zoph, Liam Fedus, Maarten Bosma, Zong-
wei Zhou, Tao Wang, Yu Emma Wang, Kellie Web-
ster, Marie Pellat, Kevin Robinson, Kathy Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2021. Glam: Efficient scaling of language mod-
els with mixture-of-experts.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Mahmoud El-Haj, Udo Kruschwitz, and Chris Fox.
2010. Using mechanical turk to create a corpus of
arabic summaries.

Ibrahim Abu El-Khair. 2016. 1.5 billion words Arabic
Corpus. arXiv preprint arXiv:1611.04033.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of nlp leaderboards.
arXiv preprint arXiv:2009.13888.

Daniela Gerz, Ivan Vulic, Edoardo Maria Ponti, Roi
Reichart, and Anna Korhonen. 2018. On the relation
between linguistic typology and (limitations of) mul-
tilingual language modeling. In Proceedings of the

3144

https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.18653/v1/2021.acl-long.551
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://doi.org/10.48550/ARXIV.2004.05150
https://doi.org/10.18653/v1/2020.coling-industry.9
https://doi.org/10.18653/v1/2020.coling-industry.9
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.48550/ARXIV.2104.09694
https://doi.org/10.48550/ARXIV.2104.09694
https://doi.org/10.48550/ARXIV.2112.06905
https://doi.org/10.48550/ARXIV.2112.06905
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/d18-1029
https://doi.org/10.18653/v1/d18-1029
https://doi.org/10.18653/v1/d18-1029


2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31
- November 4, 2018, pages 316–327. Association for
Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in arabic pre-trained
language models. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, WANLP
2021, Kyiv, Ukraine (Virtual), April 9, 2021, pages
92–104. Association for Computational Linguistics.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. AMMUS: A survey
of transformer-based pretrained models in natural
language processing.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, et al. 2021. Dynabench: Rethinking benchmark-
ing in nlp. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4110–4124.

Yoon Kim, Yacine Jernite, David A. Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, pages 2741–2749. AAAI
Press.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4034–4048,
Online. Association for Computational Linguistics.

Wuwei Lan, Yang Chen, Wei Xu, and Alan Ritter. 2020.
An empirical study of pre-trained transformers for
arabic information extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4727–4734.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Max-
imin Coavoux, Benjamin Lecouteux, Alexandre Al-
lauzen, Benoit Crabbé, Laurent Besacier, and Didier
Schwab. 2020. Flaubert: Unsupervised language
model pre-training for french. In Proceedings of The

12th Language Resources and Evaluation Confer-
ence, pages 2479–2490.

Chanhee Lee, Young-Bum Kim, Dongyub Lee, and
Heui-Seok Lim. 2018. Character-level feature ex-
traction with densely connected networks. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 3228–3239.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A community
library for natural language processing. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 175–184.

Guangjun Li, Xianzhi Wang, and Minxi Li. 2021. A
review of recent trends and industry prospects for
artificial intelligence technologies. In 2021 8th In-
ternational Conference on Behavioral and Social
Computing (BESC), pages 1–7. IEEE.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin
Wang, and Guoping Hu. 2020. CharBERT: Character-
aware pre-trained language model. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 39–50, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
monte de la Clergerie, Djamé Seddah, and Benoît
Sagot. 2019. Camembert: a tasty french language
model. arXiv preprint arXiv:1911.03894.

S. Mehri, M. Eric, and D. Hakkani-Tur. 2020.
Dialoglue: A natural language understanding
benchmark for task-oriented dialogue. ArXiv,
abs/2009.13570.

3145

https://www.aclweb.org/anthology/2021.wanlp-1.10/
https://www.aclweb.org/anthology/2021.wanlp-1.10/
https://www.aclweb.org/anthology/2021.wanlp-1.10/
https://doi.org/10.48550/ARXIV.2108.05542
https://doi.org/10.48550/ARXIV.2108.05542
https://doi.org/10.48550/ARXIV.2108.05542
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://doi.org/10.18653/v1/2020.emnlp-main.382
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.coling-main.4


Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Re-
cent advances in natural language processing via
large pre-trained language models: A survey. arXiv
preprint arXiv:2111.01243.

El Moatez Billah Nagoudi, AbdelRahim Elmadany, and
Muhammad Abdul-Mageed. 2022. AraT5: Text-to-
text transformers for Arabic language generation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 628–647, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

El Moatez Billah Nagoudi, AbdelRahim Elmadany,
Muhammad Abdul-Mageed, and Tariq Alhindi. 2020.
Machine generation and detection of Arabic manipu-
lated and fake news. In Proceedings of the Fifth Ara-
bic Natural Language Processing Workshop, pages
69–84, Barcelona, Spain (Online). Association for
Computational Linguistics.

Tarek Naous, Wissam Antoun, Reem Mahmoud, and
Hazem Hajj. 2021. Empathetic BERT2BERT conver-
sational model: Learning Arabic language generation
with little data. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 164–
172, Kyiv, Ukraine (Virtual). Association for Compu-
tational Linguistics.

Tarek Naous, Christian Hokayem, and Hazem Hajj.
2020. Empathy-driven Arabic conversational chatbot.
In Proceedings of the Fifth Arabic Natural Language
Processing Workshop, pages 58–68, Barcelona, Spain
(Online). Association for Computational Linguistics.

Subhadarshi Panda, Anjali Agrawal, Jeewon Ha, and
Benjamin Bloch. 2021. Shuffled-token detection for
refining pre-trained RoBERTa. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Student Research Workshop, pages 88–93, Online.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026–
8037.

Joelle Pineau. 2020. Machine learning reproducibil-
ity checklist v2.0. https://www.cs.mcgill.ca/
~jpineau/ReproducibilityChecklist.pdf.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo Larochelle.

2021. Improving reproducibility in machine learning
research: a report from the neurips 2019 reproducibil-
ity program. Journal of Machine Learning Research,
22.

Yuval Pinter, Amanda Stent, Mark Dredze, and Jacob
Eisenstein. 2021. Learning to look inside: Augment-
ing token-based encoders with character-level infor-
mation.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unrestricted
coreference in ontonotes. In Joint Conference on
EMNLP and CoNLL-Shared Task, pages 1–40.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5370–5381.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. Kuisail at semeval-2020 task 12: Bert-cnn
for offensive speech identification in social media. In
Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 2054–2059.

Ananya B. Sai, Akash Kumar Mohankumar, and
Mitesh M. Khapra. 2022. A survey of evaluation
metrics used for nlg systems. ACM Comput. Surv.,
55(2).

Haitham Seelawi, Ibraheem Tuffaha, Mahmoud Gzawi,
Wael Farhan, Bashar Talafha, Riham Badawi, Zyad
Sober, Oday Al-Dweik, Abed Alhakim Freihat, and
Hussein Al-Natsheh. 2021. Alue: Arabic language
understanding evaluation. In Proceedings of the
Sixth Arabic Natural Language Processing Workshop,
pages 173–184.

Alexander Sergeev and Mike Del Balso. 2018. Horovod:
fast and easy distributed deep learning in tensorflow.
arXiv preprint arXiv:1802.05799.

Tatiana Shavrina, Alena Fenogenova, Anton Emelyanov,
Denis Shevelev, Ekaterina Artemova, Valentin Ma-
lykh, Vladislav Mikhailov, Maria Tikhonova, Andrey
Chertok, and Andrey Evlampiev. 2020. Russiansu-
perglue: A russian language understanding evalua-
tion benchmark. arXiv preprint arXiv:2010.15925.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

3146

https://aclanthology.org/2022.acl-long.47
https://aclanthology.org/2022.acl-long.47
https://aclanthology.org/2020.wanlp-1.7
https://aclanthology.org/2020.wanlp-1.7
https://aclanthology.org/2021.wanlp-1.17
https://aclanthology.org/2021.wanlp-1.17
https://aclanthology.org/2021.wanlp-1.17
https://aclanthology.org/2020.wanlp-1.6
https://doi.org/10.18653/v1/2021.naacl-srw.12
https://doi.org/10.18653/v1/2021.naacl-srw.12
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://doi.org/10.48550/ARXIV.2108.00391
https://doi.org/10.48550/ARXIV.2108.00391
https://doi.org/10.48550/ARXIV.2108.00391
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.48550/ARXIV.1804.04235
https://doi.org/10.48550/ARXIV.1804.04235


Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipeline for process-
ing huge corpora on medium to low resource infras-
tructures. In 7th Workshop on the Challenges in the
Management of Large Corpora (CMLC-7). Leibniz-
Institut für Deutsche Sprache.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0:
Large-scale knowledge enhanced pre-training for lan-
guage understanding and generation. arXiv preprint
arXiv:2107.02137.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0:
A continual pre-training framework for language un-
derstanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 8968–8975.

Bashar Talafha, Mohammad Ali, Muhy Eddin Za’ter,
Haitham Seelawi, Ibraheem Tuffaha, Mostafa Samir,
Wael Farhan, and Hussein Al-Natsheh. 2020. Multi-
dialect arabic bert for country-level dialect identifi-
cation. In Proceedings of the Fifth Arabic Natural
Language Processing Workshop, pages 111–118.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022. Natural Language Processing with Transform-
ers. " O’Reilly Media, Inc.".
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A Pretraining Details

A.1 Filtering Heuristics
1. Remove sentences with HTML or Javascript

code (Raffel et al., 2019).

2. Remove sentences if it has less than 70% Ara-
bic characters.

3. Remove sentences with less than 8 words.

4. Remove sentences with more than 3 succes-
sive punctuation marks (excluding dot).

5. Remove documents with less than 64 words.

6. Remove long spans of non-Arabic text (mostly
English) inside a sentence. We observe that
most of these sentences were gibberish/noisy
text and not related to the original content.

7. Represent each sentence by the concatenation
of the first and last 3 words. We only con-
sider words that did not include any digits and
were longer than 3 characters. Then, we de-
duplicate the corpus by only keeping the first
occurrence of sentences with the same key.

8. Discard a document if more than 30% of
its sentences are removed in our filtering
pipeline.

A.2 BERT-style Models
For tokenization, we use the byte-level Byte Pair
Encoding (BBPE) (Wei et al., 2021) training
method which considers the text as a byte se-
quence. This method improves the learning of
the representations of rare words and eliminates
the out-of-vocabulary problem. We use a vocab-
ulary size of 64K which is comparable to that
of AraBERT, twice the size of Arabic-BERT and
CAMeLBERT, and 36% smaller than ARBERT
and MARBERT. Our JABER and SABER models
use the same architecture as that of BERT-base and
BERT-large (Devlin et al., 2018) respectively. The
former is a stack of 12 Transformer-encoder layers
(768 hidden units) while the latter consists of 24
Transformer-encoder layers (1024 hidden units).

For Char-JABER, we first randomly initialize a
character embedding lookup table with a vocab size
of 160 characters (induced from the pre-training
corpus) and a 768 hidden size. Each word is split
into a sequence of characters with a maximum char-
acter sequence length of 10. We use two 1-D CNN

layers with each layer having a filter size of 348
and a sliding window of size 3. Note that we ap-
ply a maxpooling layer with a window size of 5
after the first CNN layer. After the second CNN
layer, a linear layer is used to map the final rep-
resentation to the 768 hidden size. Although this
architecture adds an additional 700K parameters to
Char-JABER, this has a negligible computational
overhead on JABER.

Following Devlin et al. (2018), we pre-train our
models on two unsupervised tasks: Masked Lan-
guage Modelling (MLM) and Next Sentence Pre-
diction (NSP). Specifically for MLM, we use whole
word masking with a probability of 15%. The orig-
inal tokens are replaced 80% of the time with the
special [MASK] token, 10% of the time by a ran-
dom token, and remains unchanged 10% of the
time. We choose a duplication factor of 3: each
input sequence generates 3 random sets of masked
tokens.

We pre-train our JABER and SABER models on
16 servers for 15 and 5 epochs respectively. Each
server constitutes 8 NVIDIA Tesla V100 GPUs
with 32GB of memory. The distributed training is
achieved through Horovod (Sergeev and Del Balso,
2018) with full precision. We use the AdamW
(Loshchilov and Hutter, 2017) optimizer with a
learning rate decay setting the initial learning rate
to 1e-4 with 10,000 warm-up steps. We train with
a maximum sequence length of 128, and set the
per-GPU batch size to 64 for JABER and 32 for
SABER. It takes approximately 16 and 32 hours
to conclude one epoch for JABER and SABER
respectively. Finally, the pre-training setting of our
Char-JABER model is identical to that of JABER
with the exception of using a smaller initial learning
rate of 5e-5.

A.3 Encoder-Decoder Models

Our text-to-text Transformer models AT5B and
AT5S use the same encoder-decoder architecture as
T5-base and T5-small (Raffel et al., 2019) respec-
tively. The encoder and decoder components of
T5-base have similar configuration as that of BERT-
base (12 layers) while T5-small is a smaller model
with only 6 layers and 8-headed attention. We
use the self-supervised denoising objective (Raf-
fel et al., 2019) to pre-train our models. Specif-
ically, 15% of tokens are randomly dropped-out
from the input and all consecutive spans of such
tokens are replaced by a single sentinel token. The
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expected output is a sequence of these dropped-out
tokens separated by the corresponding sentinel to-
ken. We train our T5-style models using the same
vocabulary and pre-training corpus as that of our
BERT-style models.

The models are pre-trained on 64 GPU clusters
for 200k steps. The pre-training code is based on
the PyTorch (Paszke et al., 2019) version of the
Transformers library (Wolf et al., 2020). The dis-
tributed training is achieved by PyTorch’s native
distributed training capabilities. We use the Adafac-
tor optimizer (Shazeer and Stern, 2018) with an
initial learning rate of 1 and inverse square-root
decay until the end of pre-training.

For both AT5S and AT5B, the maximum se-
quence length is set to 512 for the encoder and
114 for the decoder. We use a per-GPU batch size
of 56 and 16 for AT5S and AT5B respectively (the
maximum batch size that can fit on a single GPU).
It is important to note that most of our implemen-
tation choices (learning rate, optimizer, etc.) are
adopted from Raffel et al. (2019) and Nagoudi et al.
(2022). We only differ from AraT5 through the use
of a different pre-training corpus and vocabulary.

B Fine-tuning Details

B.1 Generative Tasks Datasets

While there is no equivalent for ALUE for gen-
erative tasks, Nagoudi et al. (2022) recently in-
troduced the ARGEN benchmark for Arabic natu-
ral language generation composed of 7 tasks and
19 datasets. Besides the lack of a public leader-
board and private test sets, there are certain issues
with this benchmark. Some datasets are not avail-
able publicly (e.g. ARGENNTG), and in some
cases, the exact data split is not made public (e.g.
ARGENTS). Therefore, we only consider three
ARGEN tasks in our evaluation: Question Gener-
ation (QG), Question Answering (QA), and Text
Summarization (TS). We did not include any tasks
that involved non-Arabic text (e.g. translation)
since we restrict the scope of this work to a mono-
lingual setting.

Furthermore, we also evaluate our models on the
EMpathetic Dialogues (EMD) dataset (Naous et al.,
2020), which is an Arabic conversational dataset of
empathetic conversations curated by translating its
English counterpart (Rashkin et al., 2019). Table 11
shows the number of instances in the train/dev/test
splits for each dataset. The data collection process
and evaluation metrics are adopted from (Nagoudi

et al., 2022; Naous et al., 2021). Specifically, we
use ROUGE (Lin, 2004) to evaluate models on the
TS task and BLEU (Papineni et al., 2002) for QA,
QG and EMD tasks.

Task |Train| |Dev| |Test|

TS 23.4k 2.9k 2.9k/153
EMD 19.5k 2.8K 2.5k

QG/QA 101.6k 517 11.6k

Table 11: Train/Dev/test sizes of the datasets used to
evaluate encoder-decoder models. Note that the test
set for TS consists of 2.9K articles from WikiLingua
(Ladhak et al., 2020) and 153 articles from Essex Arabic
Summaries Corpus (EASC) (El-Haj et al., 2010).

We adopt the generative format for QA where
the input is a pair of passage and question text,
and the model is expected to generate the answer.
Following Nagoudi et al. (2022), we use the same
dataset for QG as QA except that the input now is a
pair of passage and answer text, and the model must
generate the corresponding question. Note that for
the summarization task, Nagoudi et al. (2022) did
not publish the exact split they used on WikiLingua
(Ladhak et al., 2020). We create our own splits by
first randomly shuffling the dataset (with seed =
42) and then splitting with the same proportions of
80% train, 10% dev and 10% test. We will make
the code publicly available to reproduce our splits
and empirical results.

It is important to mention that the performance
scores obtained from our re-implementations on
TS and EMD tasks are significantly lower than the
original scores reported in (Nagoudi et al., 2022)
and (Naous et al., 2021). This is due to errors in
the original implementations. For TS, we found
a major error in the calculation of the ROUGE
score as the ROUGE tool used by the authors was
incompatible with Arabic. For EMD, we found the
original BLEU scores to be inflated as the authors
compute it on segmented text and not at the word-
level (after de-segmentation).
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Figure 1: Screenshot of ALUE leaderboard as by 13/10/2022. Red buttons indicate our private submission baselines
which are not visible to the public.

Model QA QG EMD TS

AraB2B

batch size 16 16 32 -
hidden dropout 0.1 0.2 0.1 -
learning rate 1e-03 1e-03 1e-03 -

AraT5-base

batch size 32 8 8 4
hidden dropout 0.2 0.2 0.1 0.1
learning rate 1e-03 1e-03 1e-03 1e-03

AT5S

batch size 32 16 32 4
hidden dropout 0.1 0.2 0.1 0.1
learning rate 1e-03 1e-03 1e-03 1e-03

AT5B

batch size 16 32 16 4
hidden dropout 0.1 0.1 0.1 0.2
learning rate 1e-03 1e-03 1e-03 1e-03

Table 12: Best hyperparameters for Arabic encoder-
decoder models on the generative tasks.
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Model MQ2Q MDD SVREG SEC FID OOLD XNLI OHSD

Arabic-BERT

batch size 64 16 16 16 32 32 64 16
hidden dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
learning rate 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05

AraBERT

batch size 128 32 8 8 8 32 32 16
hidden dropout 0.1 0.1 0.2 0.1 0.1 0.1 0.3 0.1
learning rate 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05

CAMeLBERT

batch size 16 8 8 32 8 128 32 8
hidden dropout 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1
learning rate 5e-05 2e-05 2e-05 5e-05 2e-05 2e-05 2e-05 2e-05

ARBERT

batch size 64 16 32 8 32 128 32 32
hidden dropout 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.3
learning rate 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 7e-06

MARBERT

batch size 64 64 16 8 64 64 64 64
hidden dropout 0.3 0.2 0.1 0.3 0.1 0.2 0.2 0.1
learning rate 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05

JABER

batch size 64 32 8 16 32 128 16 32
hidden dropout 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.3
learning rate 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 2e-05 7e-06

Char-JABER

batch size 64 32 32 16 8 32 64 16
hidden dropout 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.1
learning rate 7e-06 2e-05 2e-05 2e-05 2e-05 7e-06 2e-05 7e-06

SABER

batch size 32 32 8 8 32 32 32 32
hidden dropout 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.1
learning rate 7e-06 2e-05 7e-06 2e-05 2e-05 7e-06 7e-06 7e-06

AT5S

batch size 16 32 8 16 16 16 8 32
hidden dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
learning rate 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03

AT5B

batch size 8 16 16 16 8 16 8 64
hidden dropout 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
learning rate 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03

AraT5-base

batch size 64 64 16 64 32 64 32 8
hidden dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
learning rate 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03 1e-03

Table 13: Best Hyperparameters for Arabic BERT-based and T5-based models on all ALUE tasks.
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