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Abstract

In this work, we investigate transfer learning
from semantic role labeling (SRL) to event
argument extraction (EAE), considering their
similar argument structures. We view the ex-
traction task as a role querying problem, unify-
ing various methods into a single framework.
There are key discrepancies on role labels and
distant arguments between semantic role and
event argument annotations. To mitigate these
discrepancies, we specify natural language-like
queries to tackle the label mismatch problem
and devise argument augmentation to recover
distant arguments. We show that SRL annota-
tions can serve as a valuable resource for EAE,
and a template-based slot querying strategy is
especially effective for facilitating the transfer.
In extensive evaluations on two English EAE
benchmarks, our proposed model obtains im-
pressive zero-shot results by leveraging SRL
annotations, reaching nearly 80% of the fully-
supervised scores. It further provides benefits
in low-resource cases, where few EAE anno-
tations are available. Moreover, we show that
our approach generalizes to cross-domain and
multilingual scenarios.

1 Introduction

Event argument extraction (EAE) is a key compo-
nent in the task of event extraction (Ahn, 2006)
that aims to identify the arguments that serve as
roles for event frames. While recent developments
in neural network models have enabled impressive
improvements on this task in the fully-supervised
setting (Wang et al., 2019b; Pouran Ben Veyseh
et al., 2020; Ma et al., 2020; Li et al., 2021b), EAE
remains challenging when abundant annotations
are not available. In particular, event schemes are
usually specific to the target scenarios. For ex-
ample, events in biomedical domains, like GENE-
EXPRESSION in GENIA (Kim et al., 2008), can be
quite different than the ones in ACE (LDC, 2005),
such as ATTACK and CONTACT. It is costly and
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Figure 1: Example annotations with ACE events (above)
and PropBank semantic frames (below). Brown and
red rectangles indicate predicate and argument words,
respectively. Green lines denote argument links.

inefficient to annotate large amounts of data for
every new application.

Compared with the specific schemes in EAE,
semantic role labeling (SRL; Gildea and Juraf-
sky, 2002; Palmer et al., 2010) extracts predicate-
argument structures with more general and broad-
coverage frame ontologies. SRL also enjoys rich
and carefully annotated resources, such as Prop-
Bank (Palmer et al., 2005) and FrameNet (Baker
et al., 1998), covering a wide range of semantic
frame types. As shown in the example in Figure 1,
SRL closely resembles EAE: they both specify se-
mantic frames triggered by predicate words and
aim at finding arguments for participating roles.
Therefore, it is natural to consider applying transfer
learning1 (Pan and Yang, 2009; Ruder et al., 2019)
to enhance EAE with general SRL resources.

Notwithstanding the similarities, there are two
main discrepancies between SRL and EAE struc-
tures that should be managed in order to facilitate
transfer between them. The first is label mismatch.
For example, ACE adopts role names with natu-
ral language words, such as BUYER and PLACE,
whereas PropBank utilizes generalized labels like
ARG0 and ARGM-LOC. PropBank also provides

1Because of the similarities, EAE and SRL may be ar-
guably viewed as two versions of the same task. Even in this
case, we can still view this as a special form of transductive
transfer learning, if not inductive transfer on different tasks.
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more specific role descriptions, but many are incon-
sistent and not well-formed for direct use as role
names. Although FrameNet also adopts natural
language role names, it is laborious and sometimes
challenging to find all the direct mappings to the tar-
get event frames. Moreover, SRL resources do not
typically annotate distant arguments, where there
are no explicit syntactic encodings expressing the
argument relation.2 For example, in the sentence
depicted in Figure 1, though it can be understood
that the “store” is very likely to be the place where
the “buying” happens, SRL annotations do not in-
clude this semantically inferred link, whereas it is
considered an argument in event annotations.

Although there have been previous works utiliz-
ing SRL for argument linking (O’Gorman, 2019), it
remains unclear how to best directly transfer from
SRL to EAE, especially with recent pre-trained
models. In this work, we provide a comprehen-
sive investigation on the transfer from SRL to
EAE. We view the tasks as a role querying prob-
lem within a unified framework, which covers var-
ioius different argument extraction methods, in-
cluding classification-based methods (Ouchi et al.,
2018; Ebner et al., 2020), machine reading compre-
hension (MRC)-based methods (Liu et al., 2020;
Du and Cardie, 2020; Li et al., 2020; Feng et al.,
2020; Lyu et al., 2021; Liu et al., 2021a) as well
as sequence-to-sequence generation based ones (Li
et al., 2021b; Hsu et al., 2022; Lu et al., 2021).
We further explore a template-based slot querying
strategy, by querying argument roles using con-
textualized representations of the corresponding
role slots in the frame template. We tackle the
label-mismatch problem by forming the queries
in templated natural language, which allows for
the same query representation to be shared across
varied schemes. To mitigate the lack of distant
argument annotations in SRL, we apply two argu-
ment augmentation techniques: Data augmentation
by shuffling input texts, which reduces the model’s
reliance on local syntax, and knowledge distilla-
tion from question answering (QA) data, which
incorporates distant argument signals.

With experiments on the standard ACE and
ERE English event benchmarks, we show that
SRL annotations are valuable resources for EAE.
With the template-based querying strategy, a model

2These are also known as implicit arguments (O’Gorman,
2019). While there are more fine-grained linguistic criteria,
we take a simplified approximate approach by checking the
syntactic distances between triggers and arguments.

trained with SRL can reach nearly 80% of the fully-
supervised F1 score in the zero-shot scenario, and
an intermediate-training scheme provides further
benefits in the low-resource setting. The model also
obtains promising results in extensions to cross-
domain and multi-lingual scenarios, demonstrating
its generalizability. Our work highlights the utility
of SRL annotations in the context of downstream
applications with limited direct annotations.

Our implementation is available at https://
github.com/zzsfornlp/zmsp/.

2 Method

2.1 Querying Methods
For either semantic roles or event arguments, we
can view the extraction task as a role querying
problem. Specifically, we are given a sequence
of words s = {w1, ..., wn} as input contexts as
well as a predicate or event trigger word we and
the semantic frame or event type t. Each type is
associated with a list of participating roles to be
filled and the task is to extract arguments from the
input contexts for each role. We adopt one specific
modeling simplification, that is, our model only
predicts the syntactic head word of an argument.
For EAE, a heuristic method is further adopted to
expand from head words to spans: We simply in-
clude the head word’s child that is linked with an
MWE dependency relation3 and has an uppercase
first letter. We find that this heuristic works well
in practice, expanding correctly to 95% of the ar-
gument spans in the ACE and ERE event datasets.
We take this approach to make it easier to transfer
across different schemes, which may have different
annotation criteria on argument spans.

In this way, we can view both SRL and EAE as
role querying problems over the input words (all
the queries depend on the predicates, which we
assume given and omit for brevity). Specifically,
the probability of a candidate word w to be the
argument filling a role r is:

pr(w) =
exp(λhT

wqr)∑
w′∈s∪{ϵ} exp(λh

T
w′qr)

Here, hw denotes the representation vector of the
word w, and qr indicates the querying vector of the
role r. We further include a scaling factor λ, which
is fixed to 1√

d
, where d is the dimension of h and q,

following the attention calculation in Transformer
3Multi-word expressions: {“fixed”, “flat”, “compound”}.
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Figure 2: Illustrations of different role querying strategies (for the “artifact” role), based on 1) CLF: classification,
2) MRC: machine reading comprehension, 3) GEN: generation, and 4) TSQ: template-based slot querying.

(Vaswani et al., 2017). We specify a dummy token
ϵ to handle the cases where no arguments can be
found for a role. This modeling scheme is flexible
and allows different argument extraction strategies
to be viewed in a unified way. In this work, we
explore four strategies, as illustrated in Figure 2.
Since these strategies are not totally novel, we give
brief descriptions in the main content and refer the
reader to Appendix A.1 for more details.

1) CLF. We start with querying based on tradi-
tional classification, which assigns to each role a
non-contextualized vector. To allow transfer to dif-
ferent role names, we initialize the role vectors
with average-pooled representations obtained by
passing the role names individually to a pre-trained
language model. We call this strategy classification-
based since the role vectors can be viewed as
weights in a linear classifier. This corresponds
to more traditional argument extraction methods
(Ouchi et al., 2018; Ebner et al., 2020). One short-
coming of this strategy is that the query vectors
are constructed without access to input contexts,
limiting their representation ability.

2) MRC. Recently, the strategy of casting NLP
tasks as machine reading comprehension problems
(Rajpurkar et al., 2016, 2018) has been applied to
EAE (Liu et al., 2020; Du and Cardie, 2020; Li
et al., 2020; Feng et al., 2020; Lyu et al., 2021; Liu
et al., 2021a). In this strategy, each role is queried
with a contextualized question that is encoded to-
gether with the context. Unless otherwise specified,
we form the role questions using the templates of
Liu et al. (2021a), which can be automatically gen-
erated from the role names. Since each question
queries only one role, this strategy requires a full
pass through the encoder for each role, raising con-
cerns regarding its computational efficiency,4 as

4Please refer to Appendix B.8 for speed comparisons.

compared to CLF.

3) GEN. More recently, many approaches ex-
tract arguments by sequence-to-sequence gener-
ation (Paolini et al., 2021; Li et al., 2021b; Hsu
et al., 2022; Lu et al., 2021; Du et al., 2021; Huang
et al., 2022). Specifically, Li et al. (2021b) and
Hsu et al. (2022) adopt a template-based genera-
tion strategy, which aggregates the queries of all
roles for an event into one template sentence (or
bleached statement (Chen et al., 2020)). This strat-
egy is promising since the template can contain
all roles and query them in one pass. Since argu-
ments come from input contexts, we further adopt a
pointer network (Vinyals et al., 2015) for argument
selection rather than generating through output vo-
cabularies, fitting our unified querying framework.
Because of the auto-regressive decoding scheme,
this strategy can also suffer lower efficiency com-
pared to CLF.

4) TSQ. We further explore a strategy that fully
exploits the representational power and querying
efficiency of templates. We do not fill the templates
with actual words in the context but simply keep
the role names as placeholders. We concatenate
this template with the context, then pass the full
sequence to the encoder for contextualization. Fi-
nally, the contextualized representations of the role
slots in the template are adopted as role query vec-
tors. We refer to this strategy as Template-based
Slot Querying (TSQ). This approach is similar to
the contemporaneous work of Ma et al. (2022). Our
approach to template querying differs primarily in
that: 1) We concatenate both the template and the
context and feed them to the encoder, allowing for
bidirectional modeling, and; 2) Our models predict
argument head words rather than spans to facilitate
the transfer since unlike Ma et al. (2022) our focus
is transfer learning.
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Scheme Frame Template

PropBank
forbid.01 authority forbid protagonist action in place
rent.01 at lessor lessee rent goods from lessor for money in place

swim.01 from area self mover swim against area to goal in place

FrameNet
Abandonment agent abandon theme in place

Employing employer employ employee field position task in place
Mention communicator mention specified content message in medium in place

Table 1: Examples of the semi-automatically generated templates. The predicate is emboldened and roles are
underlined. Some examples are specially picked to show typical problems of this noisy process.

2.2 SRL Templates

We take PropBank5 (Palmer et al., 2005), Nom-
Bank6 (Meyers et al., 2004) and FrameNet7 (Baker
et al., 1998) as our main SRL resources. Since
many NomBank frames are derived from PropBank
frames, we simply map them to the PropBank coun-
terparts (by checking the “source” attribute in a
NomBank frame) and ignore the ones that do not
have such mappings. We filter event-related SRL
frames by excluding the ones that do not have any
verb realizations, which are judged by the POS sets
provided in the frame files. Moreover, we only
consider a subset of non-core or modifier roles
that are related to the target EAE task, including
ARGM-LOC in PropBank and {PLACE, INSTRU-
MENT, WEAPON, VEHICLE} in FrameNet.

To allow transfer across different schemes, we
need to specify extra information required by the
role querying strategies. In particular, templates
are not included in SRL frame definitions and it is
infeasible to manually specify them for hundreds
to thousands of SRL frames. We adopt a semi-
automatic method to construct the templates, with
extra information collected from data statistics:

• Role names. We directly take the role label
names of FrameNet since they are already in natu-
ral language forms. We further train8 a role label
classifier9 with the FrameNet data and apply it to

5https://github.com/propbank/
propbank-frames/releases/tag/v3.1

6https://nlp.cs.nyu.edu/meyers/
nombank/nombank.1.0/

7https://framenet.icsi.berkeley.edu/
fndrupal/frameIndex

8Another option could be to use existing resources that
connect PropBank and FrameNet, such as SemLink (Palmer,
2009; Stowe et al., 2021). Nevertheless, their coverage is still
slightly lacking and we thus take a data-driven method, which
could map every frame that has data.

9This classifier is similar to our CLF querying model ex-
cept that no extraction is needed. Its accuracy on the FrameNet
dev set is around 0.7. Notice that even when the classifier does
not hit the most suitable label, the predicted ones may still be
reasonable for our usage.

the PropBank data. Then for each frame-specific
role, the most frequently predicted label will be
its role name. For example, for the ARG0 role of
the “buy.01” frame, its arguments in the dataset
are mostly predicted to the BUYER label, which
is thus assigned as its role name.

• Role orders. We construct a template for an SRL
frame by concatenating its predicate word and
role names. The main thing to specify is their
ordering. We again take a statistical approach
and collect each role’s relative distance to the
predicate. For example, in the “buy.01” frame
instance of “He bought a book in a store.”, ARG0
(He) gets a distance of -1, ARG1 (book) gets a
+1 and ARGM-LOC (store) gets a +2. Finally,
the role orders in the templates are decided by
the roles’ average relative distances. We aim to
obtain a canonical verb-styled ordering in active
voice, and thus we only consider frame instances
that are realized by non-passive verbal predicates.

• Preposition words. When realized in natural lan-
guage sentences, many roles are accompanied by
prepositions. We count the frequency that a role
is filled by an argument that utilizes a preposi-
tion10 and keep the prepositions that appear more
frequent than 25%. When there are such prepo-
sitions, we add the preposition before the role
name and put them together into the slot. When
there are multiple feasible prepositions, we ran-
domly sample one in training and utilize the most
frequent one in testing.

With these three types of extra information, we
construct the templates by concatenating all the
corresponding ordered pieces. For example, the
“buy.01” PropBank frame gets a template of “buyer
buy goods for recipient from seller for money in
place”. Most of the above heuristics are decided
by manually checking the generated outputs for the
PropBank and FrameNet frames.

10The criterion is that the argument’s head word has a de-
pendency relation of “case” to a child whose POS is “ADP”.
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Notice that this semi-automatic approach is far
from perfect and there can be noises and inconsis-
tencies, as shown in some of the examples in Ta-
ble 1. Nevertheless, the above three pieces provide
complementary information for role specification:
the role names provide semantic information, the
role orders include syntactic word order informa-
tion, and the prepositions give further hints. In
practice, we find that most of the generated tem-
plates are reasonably close to natural language. In
this way, we are able to form similar queries for
both SRL and EAE, tackling the label mismatch
problem between different frame schemes.

2.3 Argument Augmentation
In addition to label mismatch, another discrepancy
between SRL and EAE is that arguments in tradi-
tional SRL are syntactically constrained whereas
event arguments can be extracted from any place
in the context. Therefore, SRL models will have
difficulties in predicting syntactically distant argu-
ments. To mitigate this problem, we apply data
augmentation (Feng et al., 2021) and knowledge
distillation (Hinton et al., 2015) to augment distant
arguments for SRL instances.

Firstly, we apply a simple data augmentation
method by shuffling the input contexts. Since the
SRL arguments are constrained by syntax, we hy-
pothesize that by distorting syntax in some way, the
model can be trained to focus more on the seman-
tic relations between the predicates and arguments.
This may allow it to predict more distant arguments.
To distort syntax, we randomly chunk the input sen-
tence with sizes randomly chosen from one to three
at each time. Then these text chunks are shuffled,
re-concatenated, and fed to the pre-trained model
for contextualized encoding. Since our model only
selects argument head words, there is no change
to the later processing except for word position
re-indexing. We only apply this procedure during
training and simply mix vanilla unshuffled data
with the shuffled ones by a 1:1 ratio.

Moreover, we seek signals of distant arguments
from question answering (QA)11 datasets, such as
SQuAD (Rajpurkar et al., 2016, 2018). In QA an-
notations, the answers are not constrained by syn-
tax and can be freely picked from the full context,
providing valuable resources for distant arguments
(Liu et al., 2021a). Motivated by this, we train

11Specifically we adopt the extractive QA-MRC data. To
avoid confusion, we use “QA” when denoting data resources
while using “MRC” for the querying strategy.

a QA model with the MRC strategy and predict
the missing arguments for SRL instances. Instead
of hard predictions, we store a soft probabilistic
distribution over the context words for each role
and utilize these for SRL training with a standard
cross-entropy objective:

Ldistill(r) = −
∑

w∈s∪{ϵ}
pqa
r (w) log pm

r (w)

Here, for the querying of each role r, pqa
r (w) de-

notes the argument probabilities among the context
words according to the QA model, while pm

r (w)
indicates the current model’s outputs. To avoid
noise from the QA predictions, we adopt two fil-
ters. Firstly, we only apply distillation for the un-
filled roles according to SRL annotations. This is
intuitive since the filled roles already have gold
annotations. Moreover, we apply distillation only
when the prediction is confident enough. We per-
form calibration to the QA model by temperature
scaling (Guo et al., 2017) and adopt a probability
threshold of 0.5. In this way, we could borrow the
signals of distant arguments from the QA datasets
to enhance SRL instances with potential missing
distant arguments.

3 Experiments

3.1 Settings
We conduct our main experiments with English
ACE12 (Walker et al., 2006) and ERE (LDC,
2015) event datasets. We adopt the preprocess-
ing scripts13 from ONEIE (Lin et al., 2020). For
the target event frames, we manually specify ex-
tra information such as templates, adopting those
of Li et al. (2021b). Unless otherwise specified,
we assume that gold event triggers are given and
focus on the extraction of event arguments. We
also provide results with predicted event triggers in
Appendix B.3. We evaluate arguments by labeled
F1 scores, which require both argument spans and
roles to match the gold ones. We run with five
random seeds and report average results.

For external data, we take PropBank, Nom-
Bank 1.0, and FrameNet 1.7 as our main SRL re-
sources. We prepare the SRL templates by the
semi-automatic process described in §2.2. For QA
datasets, we take SQuAD 2.0 (Rajpurkar et al.,
2018), QA-SRL 2.1 (FitzGerald et al., 2018),

12We adopt ACE05-E+ (Lin et al., 2020).
13http://blender.cs.illinois.edu/

software/oneie/
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Method ACE ERE
P% R% F1% P% R% F1%

Super. 68.93±1.07 68.94±0.95 68.93±0.95 72.75±1.69 71.80±1.29 72.24±0.34

GPT-3 29.10 34.25 31.47 25.09 26.76 25.90
QA 32.77±3.70 47.43±1.17 38.62±2.58 32.68±2.78 48.13±4.08 38.74±2.09

SRLCLF 47.97±1.47 25.37±0.86 33.18±0.92 50.17±1.72 25.60±0.65 33.89±0.88
SRLMRC 58.27±0.75 39.54±1.60 47.08±0.89 62.02±1.15 45.31±1.74 52.32±0.83
SRLGEN 55.77±0.61 45.31±1.26 49.99±0.93 58.37±0.66 52.68±0.63 55.38±0.62

SRLTSQ 57.74±0.95 49.61±0.80 53.36±0.53 59.93±0.68 55.84±0.78 57.81±0.34
+shuf. 58.36±0.53 51.70±0.52 54.82±0.44 59.70±0.89 57.42±1.26 58.54±1.05
+distill 54.53±0.97 55.85±0.67 55.17±0.42 55.27±0.72 60.90±0.85 57.95±0.65
+both 55.68±1.26 57.04±0.93 56.35±1.07 56.63±0.78 61.48±0.18 58.96±0.48

Table 2: Zero-shot EAE results on event test sets. Except for GPT-3, all results are averaged over five runs.

QANom (Klein et al., 2020) and QAMR (Michael
et al., 2018). For the training of SRL or QA mod-
els, we simply adopt the concatenation of all the
corresponding datasets. Except for those that have
manual syntactic annotations, we utilize Stanza (Qi
et al., 2020) to parse the texts to obtain the syntactic
head words of the arguments.

We adopt pre-trained language models for initial-
ization and fine-tune the full models during training.
Specifically, we use RoBERTabase (Liu et al., 2019)
for encoder-only models (CLF, MRC, TSQ) and
BARTbase (Lewis et al., 2020) for encoder-decoder
models (GEN). Please refer to Appendix B.1 for
more detailed experimental settings.

3.2 Main Transfer Experiments

We conduct our main experiments with English
ACE and ERE datasets. Thanks to the unified
querying framework, we can conduct experiments
in a zero-shot setting (§3.2.1), where models
trained on external data are directly evaluated on
EAE. We also investigate low-resource settings
where some amounts of EAE annotations are avail-
able for further fine-tuning (§3.2.2).

3.2.1 Zero-shot

In the zero-shot setting, we further compare with
two methods in addition to SRL: 1) GPT-3 (Brown
et al., 2020), where we form prompts14 for each
role and use GPT-3 to generate the answers; 2) QA,
where we train QA models15 with the QA datasets.
We also provide the fully-supervised results16 (Su-
per.) as references.

14Please refer to Appendix B.2 for more GPT-3 details.
15Notice that we can only use the MRC strategy for QA

models because of the task-specific format.
16We take those of the TSQ model. More details of the

supervised results are provided in Appendix B.5.

d=1(43.0%) d=2(29.2%) d=3(13.7%) d>=4(14.1%)
Trigger-Argument Syntactic Distance

0

20

40

60

F1
(%

)

55.0

46.0

31.8

21.0

67.3

48.5

34.8

13.3

69.7

51.3

37.1

11.8

66.0

56.4

40.7

23.4

68.2

57.7

42.3

19.0

QA SRL SRL+shuf. SRL+distill SRL+both

Figure 3: Breakdowns on trigger-argument syntactic
distances (on ACE dev set). Numbers in the parentheses
denote the percentages in the gold annotations.

Results The main results are shown in Table 2.
Except for the one with the CLF strategy, SRL
models perform generally better than QA and GPT-
3, showing the effectiveness of utilizing SRL re-
sources. Among the SRL models, the TSQ strategy
generally performs the best, indicating the effec-
tiveness of this contextualized querying strategy.
Further improvements can be obtained with the
argument augmentation techniques. Interestingly,
if only using shuffling augmentation (+shuf.), pre-
cision remains roughly the same while recall in-
creases. If only using distillation (+distill), recall
increases but at the expense of precision. Finally, if
both are utilized (+both), precision and recall both
improve relative to the distillation-only case. This
leads to the overall best F1 scores, reaching around
80% of the supervised results.17

Analysis As shown in Figure 3, we further per-
form breakdowns on the syntactic distances be-
tween triggers and arguments. We especially com-
pare the QA model and the four SRLTSQ models.
Firstly, the QA model performs worse than SRL

17Please refer to Appendix B.6 for manual analysis.
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models except for the long distant ones (d ≥ 4).
This is due to SRL annotations mainly capturing
syntactically local arguments while QA is not con-
strained by this. Within the SRL models, when
adding shuffling (+shuf.) or distillation (+distill),
the middle-ranged arguments consistently obtain
improvements. One interesting pattern is that shuf-
fling benefits d = 1 but hurts d ≥ 4, while distilla-
tion seems to have the opposite effects. This may
indicate that shuffling enhances more robust predic-
tions of short- and middle-ranged arguments while
distillation encourages longer-ranged ones. Finally,
when combining these two techniques (+both), the
model can reach a good balance, achieving the best
overall results. Due to its overall better perfor-
mance, we use the “SRLTSQ+both” strategy for our
SRL models in the remainder of this work.

3.2.2 Low-resource

We further investigate scenarios where we have
some amount of target EAE annotations. With tar-
get data, we can directly train an EAE model (from
pre-trained language models). We further apply a
simple intermediate-training scheme (Phang et al.,
2018; Wang et al., 2019a) to transfer the knowledge
from SRL. We take the SRL-trained model and fur-
ther fine-tune it on the target event data. A similar
scheme can also be adopted with the QA model.
Figure 4 shows the results with different amounts
of training instances. Generally, SRL intermediate
training is beneficial, especially for middle- and
low-resource cases, again showing that SRL an-
notations can be valuable transfer sources for the
extraction of event arguments. Note that when us-
ing full target data, the external SRL data is less
helpful. We think this is probably because there
is already enough supervision to learn most of the
target patterns, and there might be less further infor-
mation that SRL could provide beyond the already
rich target resources.

3.3 Further Extensions

In the previous experiments, we take ACE and ERE
as the targets, which are still relatively similar to
the SRL annotations. In this sub-section, we further
investigate scenarios where there are larger discrep-
ancies between the source and the target. Specifi-
cally, we examine the transfer from SRL to EAE in
cross-domain (§3.3.1), multi-lingual (§3.3.2) and
multi-sentence (§3.3.3) cases.

1% 5% 10% 25% 100%
Percentage of Training Data

40

50

60

70

F1
(%

)

ACE

Direct
+SRL
+QA

1% 5% 10% 25% 100%
Percentage of Training Data

45

50

55

60

65

70

75

F1
(%

)

ERE

Direct
+SRL
+QA

Figure 4: Model performance with direct or intermedi-
ate training. Here x-axis (drawn in log scale) denotes
the percentage of utilized training data. The shaded
areas indicate the ranges of standard deviations.

3.3.1 Cross-domain

We first investigate the biomedical domain, utiliz-
ing the GENIA BioNLP-11 benchmark (Kim et al.,
2011). The GENIA events are quite different than
general SRL frames and mainly describe detailed
bio-molecule behavior (Kim et al., 2008). Still fo-
cusing on the argument extraction step, we take the
event triggers predicted by the supervised system
BEESL (Ramponi et al., 2020). We perform zero-
shot argument extraction and evaluate the QA and
SRL models, with manually compiled role ques-
tions and templates. We adopt the official eval-
uation metric of approximate recursive matching.
Please refer to Appendix C.1 for more details.

Our main comparison is between the QA and
SRL models, while we also include the supervised
results of BEESL as references. We further adopt a
self-training approach to adapt to the target domain.
Specifically, we take the texts from the original GE-
NIA training set, ignore the original labels, predict
SRL frames on these texts with our SRL model and
train a final SRL model with both these predicted
structures and external SRL resources.

The results on the test set are shown in Table 3.
SRL generally outperforms QA for most of the
types. This may be due to the difficulty of asking
proper questions. For example, for the “Regula-
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Types QA SRL SRL+self Super.

Expression 70.71 76.66 77.59 80.90
Transcription 63.64 55.63 59.72 69.46
Catabolism 62.07 66.67 66.67 74.07
Phosphorylation 75.95 78.98 83.64 89.52
Localization 53.28 66.89 67.33 69.51
– Simple – 68.26 73.63 75.27 79.31

Binding 39.41 34.90 35.10 50.19

Regulation 33.80 38.95 38.52 45.90
Pos. regulation 31.85 38.96 39.95 49.41
Neg. regulation 36.62 44.84 44.51 47.17
– Complex – 33.36 40.44 40.88 48.32

– All – 47.42 51.95 52.76 60.22

Table 3: BioNLP-11 event extraction results (F1%).

tion” event, we ask “What is regulated?” for the
role of “Theme” and “What causes the regulation?”
for “Cause”. These questions may be unrelated
to the actual contexts, while for the SRL models,
extra hints from the query templates may be help-
ful. This may also explain why QA is better on
some of the types where it is relatively easy to ask
questions. For example, for “Transcription”, the
question “What is transcribed?” would be accu-
rate for most contexts. For the SRL models, the
self-training method is beneficial overall, showing
the effectiveness of utilizing unlabeled corpus from
the target domain.18 Finally, our best zero-shot
model could recover more than 80% of the over-
all performance of the supervised model, showing
that general SRL resources can still be helpful in
the biomedical domain. The main gaps between
the zero-shot and supervised systems are in the
“Binding” and “Complex” events where there are
complicated and even nested structures. One fu-
ture direction is to investigate ways to better handle
these complex structures.

3.3.2 Multi-lingual
We next explore a multi-lingual setting, taking
ACE05 Arabic and Chinese datasets as our tar-
gets. We follow Huang et al. (2022) and utilize
their pre-precessing scripts19 for data preparation20.
We further include multi-lingual external resources.
For SRL, we utilize Arabic and Chinese PropBank
annotations from OntoNotes (Hovy et al., 2006;
Weischedel et al., 2013). For the role names in
SRL frames, we again adopt a statistical approach:

18We also tried a masked-language-model objective but did
not find obvious improvements.

19https://github.com/PlusLabNLP/X-Gear
20We further re-tokenize Chinese data with CoreNLP (Man-

ning et al., 2014) to align with segmentation in OntoNotes.

Model Arabic Chinese

Zero-shot results without any EAE annotations.

QAen 22.56±1.48 26.58±2.61
QAen+tgt 23.54±1.43 27.08±1.79
SRLen 37.75±0.52 39.37±1.45
SRLen+tgt 40.64±1.49 41.50±1.04

Multi-lingual results with English EAE annotations.

GATE† 44.5 49.2
X-Gear† 44.8 54.0
EnMRC 37.44±3.02 51.86±0.92

+QAen 39.06±2.86 53.36±1.06
+QAen+tgt 44.27±1.37 53.97±1.41

EnTSQ 37.64±1.96 53.54±0.65
+SRLen 41.86±0.92 53.96±0.85
+SRLen+tgt 51.51±1.32 58.90±0.76

Supervised results with target EAE annotations.

Super. 58.09±1.51 65.11±0.94

Table 4: Results (F1%) of ACE05 Arabic and Chinese.
“†” denotes reported results from Huang et al. (2022).

predicting with a FrameNet classifier based on a
multilingual pre-trained encoder and adopting the
mostly predicted label for each role. Due to dif-
ferences in word order and usage of prepositional
words in non-English languages, we exclude prepo-
sition words and simply order the roles by their
ARG numbers.21 We also include QA datasets for
the target languages, adopting CMRC-2018 (Cui
et al., 2019) for Chinese and the Arabic portion
of TyDiQA (Clark et al., 2020) for Arabic. All
our models in this experiment are based on the
pre-trained XLM-Rbase (Conneau et al., 2020).

The results are shown in Table 4. In the first
group, we compare zero-shot performance without
any EAE training resources. Similar to the previ-
ous trends, SRL models are better than QA mod-
els, while including annotations in the target lan-
guage could provide further benefits. In the second
group, we assume access to English EAE training
data. Similar to §3.2.2, we adopt an intermediate-
training scheme by further fine-tuning the QA or
SRL model on the English EAE data. Compared
with the results of directly training in English, in-
termediate training with external resources could
bring improvements. Again we see that models en-
hanced with SRL resources obtain the overall best
results, which are quite promising when compared
with the supervised ones.

21The Arabic and Chinese frames adopt similar schemes as
in English, specifying roles of {ARG0, ARG1, ...}. We find it
reasonable by simply ordering them by the role numbers and
forming templates of “ARG0 V ARG1 ARG2 ...”.
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Model Overall Same-Sent. Cross-Sent.

QA 28.23±0.74 35.16±1.42 11.66±0.69
SRL 48.03±0.30 53.36±0.30 2.81±0.78
SRL+pseudo 48.00±0.14 53.50±0.16 11.17±1.88

Super. 57.38±0.84 63.45±0.86 25.52±1.31

Table 5: Argument head F1(%) on RAMS test set.

3.3.3 Multi-sentence

Finally, we investigate multi-sentence event ar-
guments, which are not constrained to the same
sentence of the event trigger but can come from
the document-level contexts. To investigate this
phenomenon, we evaluate22 on the RAMS dataset
(Ebner et al., 2020), which annotates event argu-
ments within five-sentence windows around the
triggers. We similarly extend contexts to five-
sentence windows if available in our training of
QA and SRL models for this experiment.

The zero-shot results are shown in the first group
of Table 5. Consistent with our previous findings,
SRL performs better than QA for same-sentence
arguments. Nevertheless, it predicts very few cross-
sentence arguments. This is not surprising because
there are no such signals in the SRL training data.
Inspired by previous works on coreference and
anaphora resolution (Varkel and Globerson, 2020;
Konno et al., 2021), we create pseudo SRL data
with cross-sentence arguments by surface-string
matching. Specifically, for each nominal argument
in an SRL instance, we search for words in nearby
sentences that have the same lemma as the argu-
ment’s head word. If there are, we delete the origi-
nal true argument and add pseudo cross-sentence
argument links to those matched words. Although
deletion may create ungrammatical instances, we
find it better than other schemes; such as replac-
ing the original argument with a “[MASK]” to-
ken. With the additional synthetic data, the model
can recover certain cross-sentence arguments while
keeping similar same-sentence performance. Multi-
sentence argument extraction is still a difficult task,
where even the supervised system can only obtain
an F1 score of around 25%. This calls for further
exploration, and an investigation of how best to
use auxiliary data (such as from SRL) may be a
promising direction.

22Since our head-expanding heuristic does not cover the ar-
gument span annotation conventions of RAMS, for simplicity
we only evaluate argument head words.

4 Related Work

Utilizing shallow semantics for event-centric infor-
mation extraction tasks has been explored previ-
ously. Liu et al. (2016) leverage FrameNet frames
to enhance event detection. Wang et al. (2021) con-
duct contrastive pre-training with AMR structures
to enhance event extraction. Several works uti-
lize predicted shallow semantic structures as inputs
to help low-resource event extraction (Peng et al.,
2016; Huang et al., 2018; Lyu et al., 2021) and
event schema induction (Huang et al., 2016). More-
over, SRL has been utilized for implicit argument
linking or implicit semantic role labeling (iSRL) in
many previous works (Chen et al., 2010; Laparra
and Rigau, 2012, 2013; Feizabadi and Padó, 2015;
O’Gorman, 2019). This work follows these direc-
tions and shows that SRL can be a valuable direct
training resource for EAE.

For the EAE task, most previous works adopt
a classification-based strategy where each role is
assigned static querying parameters (Chen et al.,
2015; Nguyen et al., 2016; Wang et al., 2019b;
Pouran Ben Veyseh et al., 2020; Ma et al., 2020;
Ebner et al., 2020). Recently, two interesting al-
ternative strategies have been explored to enable
extraction in more flexible ways: MRC-based meth-
ods cast the problem as answering role questions
(Liu et al., 2020; Du and Cardie, 2020; Li et al.,
2020; Feng et al., 2020; Lyu et al., 2021; Liu
et al., 2021a), while generation-based methods
adopt sequence-to-sequence generation schemes
(Paolini et al., 2021; Li et al., 2021b; Hsu et al.,
2022; Lu et al., 2021; Du et al., 2021; Huang et al.,
2022). We cover all these strategies within a uni-
fied role querying framework and further explore a
template-based role querying strategy. This strat-
egy is also related with prompt-based learning (Liu
et al., 2021b; Schick and Schütze, 2021; Li and
Liang, 2021; Petroni et al., 2019), but differs in the
extraction-targeted paradigm. Concurrently, Ma
et al. (2022) adopt a similar idea, while this work
differs mainly in our focus on transfer learning.

5 Conclusion

In this work, we explore transfer learning from se-
mantic roles to event arguments. With unified role
querying strategies, we show that SRL annotations
are a valuable resource for event argument extrac-
tion. The SRL model also obtains promising results
when extended to new scenarios with domain and
language differences.
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Limitations

This work has several limitations. Firstly, we only
focus on the event argument extraction step and
assume given event triggers. Though the first step
of event detection is also important for event extrac-
tion, we do not cover it in this work mainly due to
two reasons: 1) the annotation of event triggers is
generally less laborious than argument annotation
since word-level tagging instead of pairwise linking
is required; 2) Event detection is highly specific to
the target scheme, which is different than argument
extraction where there are more sharings between
semantic roles and event arguments. Secondly, in
this work, SRL templates are created heuristically
and do not cover syntactic and language variations.
For example, we only construct English-styled tem-
plates in active voice, which might not be ideal
for all cases. We mainly aim to show that the
template-based method is a promising way to per-
form argument extraction, especially in transferring
scenarios, but surely there could be better ways to
construct the querying templates. Finally, though
the application of argument augmentation recovers
certain amounts of distance arguments, it is still far
from an ideal solution to the problem. This calls
for more future investigations in this direction, re-
searching toward deeper and more comprehensive
semantic understanding of natural languages.
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A Details of Methods

A.1 Modeling Details

This sub-section provides more details of the mod-
els and the querying strategies that are briefly de-
scribed in §2.1.

We first introduce some common modeling set-
tings before diving into specific querying strategies.
As described in the main context, we adopt a uni-
fied role querying model for argument extraction
with representations of the role queries qr and the
candidate words hw. The construction of word
representations follows common practice: we feed
the input sequence to a contextualized encoder and
utilize each word’s output hidden vector. When a
word is split into multiple sub-words, the first sub-
word is taken. To encode the trigger word, the input
embedding of the trigger is added with a specific
trigger embedding, which is randomly initialized
and tuned together with the model. There are cases
when the context does not have mentions for some
roles (no arguments), where we adopt an all-zero
dummy hϵ, which essentially fixes the no-argument
scores to zero.

During training, we use the standard cross-
entropy loss function. When there are more than
one gold argument, we simply apply equal weights
to them. In testing, for each role, we select the
words whose score is larger than zero and ranks
within the top two among all candidate words. One
important aspect that we do not explicitly consider
in the output modeling is the interactions between
arguments as well as frame-level global features,
which have been shown effective for event extrac-
tion (Lin et al., 2020) and event schema induction
(Li et al., 2021a). Incorporating these for the trans-
fer scenarios would be an interesting future direc-
tion. The selected words are further expanded to
argument spans using the dependency-tree-based
heuristic as described in the main content.

The main difference among the querying strate-
gies is in the construction of the querying vectors,
which is described in the following.

1) CLF
For the traditional classification-based strategy, we
allocate a specific vector for each role, which is
included as model parameters. In the case where
there is enough supervision, these vectors can be
randomly initialized. To fit our goal of transfer
learning, we take advantage of the natural language
role names and encode them individually using a

Role Question Template

Person Who is the []role_name in the []trigger_text event?
Place Where does the []trigger_text event take place?
Others What is the []role_name of the []trigger_text event?

Table 6: Question templates from Liu et al. (2021a).

vanilla pre-trained model, with an input format of:

[CLS] role_name [SEP ]

For example, for the role of “artifact”, the input
is simply “[CLS] artifact [SEP ]”. We take the
averagely-pooled output representations. These
vectors are frozen for our main transferring experi-
ments since we find this to be slightly better. No-
tice that since each role name is encoded by itself
without any other contexts, the representations are
non-contextualized, making this strategy almost
the same as using a classifier.

2) MRC
For the MRC-based strategy, we form a question
for each role and dynamically obtain the query
vectors by encoding the question together with the
context. We adopt the question templates from Liu
et al. (2021a), as shown in Table 6. For example,
to query the “artifact” role of the “bought” event in
Figure 1, we ask: “What is the artifact of the bought
event?”. One advantage of this strategy is that
we only need role types, role names, and trigger
texts to form a question, making it less difficult
to extend to the SRL cases. In our preliminary
experiments, we also tried role-specific questions
for ACE utilizing those from Lyu et al. (2021), such
as “What is bought?”, and found similar results.
Following standard MRC models, we concatenate
the question and the context as the input sequence,
which is fed to the encoder:

[CLS] role_question [SEP ] context [SEP ]

Furthermore, instead of introducing extra parame-
ters with an extra answer selection head, we simply
take the contextualized representations of the ques-
tion word23 as the querying vector.

To apply MRC to the SRL data, we further need
to know whether a role is person-related, to decide

23We choose the question word instead of the role name to
allow easier transfer from QA datasets where there may be
no specific querying roles. In preliminary experiments, we
also tried average pooling over the question tokens to form
querying vectors but did not find better results.
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using the questions of “What” or “Who”.24 Simi-
lar to our template-construction strategy, we again
take a counting-based method by checking how
many times a role is filled by a personal pronoun.
If this happens for a role with a frequency larger
than 10%, we regard it as potentially person-related.
Since there are cases where a role can be filled by
either a person or an object, at training time we ran-
domly pick “Who” or “What” questions for these
potentially person-related roles, while only asking
“Who” in testing.

3) GEN
The template-generation-based strategy requires
a template for each event or SRL frame, which
specifies a canonical realization of this frame in a
natural language sentence. For example, for the
“TransferOwnership” event, we have a template
of “seller give artifact to buyer for beneficiary in
place”, where each role occupies a placeholder slot.
In this strategy, a sequence-to-sequence encoder-
decoder model is utilized. The context is encoded
by the encoder while the filled template is gener-
ated by the decoder. We mostly follow Li et al.
(2021b) but make some modifications to the out-
put modeling. Instead of directly replacing the
slots with actual argument words, we keep the role
names and insert the actual arguments after the role
slots. For example, we output25 “seller [UNK] give
artifact book to buyer he for beneficiary [UNK]
in place store” instead of “[UNK] give book to
he for [UNK] in store”. We keep the role names
for two reasons: firstly, the role names in the tar-
get sequence can act as a guide of the to-be-filled
arguments; moreover, since the arguments are re-
stricted to be words from the context, we can utilize
the representations of the role names as queries to
point to the context words. The second point allows
us to form a pointer-network-styled model, which
directly selects arguments from the context word
representations, fitting in our unified role-querying
framework.

4) TSQ

We do not need to fill in the template with actual
argument words, since our target task is an extrac-
tion task where we only need to find the argument
mentions in the context. Moreover, if no genera-
tion is required, we could merge the context and

24The “Where” question is designated to the role of PLACE.
25We utilize a specific [UNK] symbol to denote the case

when there are no arguments in the context.

the template to allow bidirectional modeling. Mo-
tivated by this, we keep the unfilled but already
natural-language-styled template as it is, concate-
nate it with the context and feed the full sequence
to the encoder:

[CLS] template [SEP ] context [SEP ]

After the encoding, we take the output represen-
tations (first sub-token) of each role slot as its
query vector and apply all the role queries par-
allelly to select the corresponding argument words.
This can be viewed as a combination of MRC
and GEN, taking advantages of both methods. As
in MRC, we perform the extraction for the role
queries, and no generation is needed, and as in
GEN, the template allows us to embed all the role
queries in one sequence rather than forwarding mul-
tiple times for different roles. Moreover, since all
the role queries are performed parallelly without
inter-dependencies, this can be viewed as a non-
autoregressive method which is more efficient than
GEN.

B Details of Main Experiments

B.1 Settings

The main experiments are conducted with En-
glish ACE26 (ACE05-E+) and ERE27 (ERE-EN)
datasets. The statistics of the event data are shown
in Table 7. For SRL data, we take those from the
latest PropBank28 (EWT and OntoNotes), Nom-
Bank29 and FrameNet30. For FrameNet, we utilize
the lexicographic annotation sets since there are
much more instances. We ignore SRL frames that
do not have verbal predicates and only keep related
non-core roles. We further split SRL arguments
in coordination to align with EAE, which treats
coordinated entities as separate arguments. For QA
data, we include SQuAD31, QA-SRL32, QANom33

and QAMR34. For the QA instances, we follow
26https://catalog.ldc.upenn.edu/

LDC2006T06
27LDC2015E29, LDC2015E68, and LDC2015E78.
28https://github.com/propbank/

propbank-release
29https://nlp.cs.nyu.edu/meyers/NomBank.

html
30https://framenet.icsi.berkeley.edu/

fndrupal/
31https://rajpurkar.github.io/

SQuAD-explorer/
32https://github.com/uwnlp/qasrl-bank
33https://github.com/kleinay/QANom
34https://github.com/uwnlp/qamr
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Dataset Split Sent. Event Arg. A/E

ACE
Train 192.2K 4.4K 6.6K 1.5
Dev 0.9K 0.5K 0.8K 1.6
Test 0.7K 0.4K 0.7K 1.6

ERE
Train 147.3K 6.2K 8.9K 1.4
Dev 1.2K 0.5K 0.7K 1.4
Test 1.2K 0.6K 0.8K 1.5

Table 7: Statistics of the ACE and ERE data. “A/E”
denotes the averaged argument number per event.

Michael et al. (2018) and use a question-context
alignment heuristic to find a predicate in the con-
text for each question. Since the external data is
mainly utilized as training resources, we simply
concatenate all the available data portions for train-
ing while splitting a small subset for development.
Data statistics of SRL and QA are shown in Table 8.

We utilize pre-trained language models
(RoBERTabase for encoder-only models (CLF,
MRC, TSQ) and BARTbase for encoder-decoder
models (GEN)) to initialize our models and
fine-tune the full models in all the experiments.
The model parameter numbers are 125M and
139M, for those with RoBERTa and BART
respectively. For the hyper-parameter settings, we
mostly follow common practices. Adam is utilized
for optimization. The learning rate is initially set
to 2e-5 and linearly decayed to 2e-6 throughout the
training process. The models are trained for 50K
steps with a batch size of 16 for event and SRL and
32 for QA. We pick models by the performance on
the development set of each task. In low-resources
cases, the original event development set is also
down-sampled accordingly as the training set. All
the experiments can be conducted with one 1080
Ti GPU and the training can usually be finished
within several hours.

B.2 Details of GPT-3 Prompting
To perform prompting with GPT-3, we utilize the
OpenAI API.35 We adopt the “Davinci” model and
the Completion endpoint. We design the prompts
with a strategy that is similar to MRC. The prompts
consist of three parts: the context sentence, a
question for the querying role and a partial answer
to be completed. The context is simply the
sentence where the event trigger appears, while
the questions are those shown in Table 6 as in
the MRC strategy. The to-be-completed answer
sentence is a declarative repetition of the question.

35https://openai.com/api/

Type Dataset Sent. Inst. Arg. A/I

SRL
PropBank 77.7K 256.1K 374.5K 1.5
NomBank 28.2K 56.9K 86.8K 1.5
FrameNet 173.0K 173.4K 208.5K 1.5

QA

SQuAD 62.2K 130.3K 86.8K 0.7
QA-SRL 64.0K 299.3K 299.3K 1.0
QANom 7.1K 26.4K 26.4K 1.0
QAMR 4.8K 88.3K 88.3K 1.0

Table 8: Statistics of the SRL and QA data. “Inst.”
denotes the number of SRL or QA instances, while “A/I”
denotes the averaged number of arguments or answers
per instance.

Method ACE ERE
gold pred. gold pred.

Super. 68.93 53.98 72.24 49.77

QA 38.62 29.94 38.74 26.02

SRLCLF 33.18 26.65 33.89 25.78
SRLMRC 47.08 25.50 52.32 38.39
SRLGEN 49.99 37.01 55.38 38.77

SRLTSQ 53.36 39.41 57.81 40.08
+shuf. 54.82 41.15 58.54 40.78
+distill 55.17 41.50 57.95 40.01
+both 56.35 42.16 58.96 41.15

Table 9: Zero-shot EAE results (F1%) on event test sets
with gold or predicted event triggers.

For example, we have the following prompt to
query the “artifact” role with the context of “He
went to the store and bought a book.”:
He went to the store and bought a
book.
Q: What is the artifact of the
bought event?
A: The artifact of the bought
event is
We let the GPT-3 model greedily decode the
remaining answer sentence and match the results
to the tokens in the original context to obtain
the arguments. When there are no matchings or
the answer is “not specified”, no arguments are
predicted for the querying role. Since the answer
should come from the context, we utilize the
“logit_bias” parameter to constrain the model to
adopt sub-tokens that appear in the context (or
those from “not specified”).

B.3 Results with Predicted Triggers

In our main experiments, we assume given gold
event triggers. In this sub-section, we train a super-
vised sequence-labeling event detector and further
utilize the predicted triggers to perform zero-shot
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Model ACE ERE

encoder-only 56.35 58.96
encoder-decoder 55.36 58.44

Table 10: Comparisons between encoder-only and
encoder-decoder TSQ models.

Method Gold Predicted

OneIE (Lin et al., 2020) - 54.8
EEQA (Du and Cardie, 2020) 63.34 -

GenIE (Li et al., 2021b) 66.67 53.71

CLF 66.96 52.62
MRC 66.55 52.43
GEN 66.76 52.81
TSQ 68.93 53.98

Table 11: Comparisons of fully-supervised ACE05-E+

test results (F1%) (with gold or predicted triggers).

argument extraction. The results are shown in Ta-
ble 9. The event detectors could obtain labeled F1
scores of 71.0 and 58.4 for ACE and ERE, respec-
tively. With the predicted triggers, the results drop
correspondingly against those with gold triggers.
Nevertheless, the overall trends are similar. The
TSQ strategy performs the best while the argument
augmentation is also helpful with predicted trig-
gers. One interesting direction to explore is full
event extraction in the zero-shot and low-resource
scenarios, which we leave to future work.

B.4 Model Choice for TSQ

Concurrently, Ma et al. (2022) explore an idea
that is similar to TSQ, while taking sequence-to-
sequence encoder-decoder model to perform argu-
ment extraction. Specifically, they encode the con-
texts with the encoder while putting the template
on the decoder side. We also compare this encoder-
decoder scheme with our encoder-only TSQ in the
transfer scenario. The results are shown in Table 10,
where the encoder-only model is slightly better.
Therefore, we utilize the encoder-only model for
the TSQ strategy.

B.5 Supervised Results

Although our main focus is on the transfer scenar-
ios, we also conduct purely supervised experiments
on the target EAE datasets. We first compare fully-
supervised results with previous works. As shown
in Table 11, our results are generally comparable to
those in previous works, which validates the quality
of our implementation.

Furthermore, we compare the four querying
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Figure 5: Argument F1(%) scores on ACE and ERE test
sets with different amounts of training data. Here x-axis
(drawn in log scale) denotes the percentage of original
training data sampled. The shaded areas indicate the
ranges of standard deviations.

strategies with different amounts of training data.
The results are shown in Figure 5. The overall trend
is similar in both datasets. In high-resource sce-
narios, different querying strategies could obtain
similar results. In low-resource cases, the meth-
ods that capture more contextual information in
the queries can generally perform better. The CLF
strategy with non-contextualized queries obtains
worse results than the others, while TSQ is the over-
all best-performing strategy. This is also consistent
with the results in the zero-shot transfer scenarios.

B.6 Manual Analysis
We further perform a manual error analysis to inves-
tigate what the main error types are. We randomly
take 100 event frames that contain prediction errors
from the ACE development set and categorize the
errors. We perform this analysis for both our best
zero-shot SRL model and the supervised model to
examine where the main gaps are. We specify eight
error categories:

• Ambiguous cases, where there are annotation
errors or ambiguities, and the predictions could
be regarded as correct in some way.

• Coreference, where predicted and gold argu-
ments are co-referenced in some way.
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Category Example SRL Super.

Correct — 194 (50.52%) 238 (63.47%)

Role Actually, they paidTransferMoney for [it]Beneficiary. 45 (11.72%) 22 (5.87%)

Local MyBuyer plan is to payTransferOwnership off my car. 40 (10.42%) 23 (6.13%)

Head They firedAttack mortars in the [direction]Target of the 7th CavalryTarget. 24 (6.25%) 8 (2.13%)

Global “We condemned the attackAttack,” he said, adding that his messages to
the terroristsAttacker is: Their efforts will not be successful.

24 (6.25%) 17 (4.53%)

Others — 14 (3.65%) 10 (2.67%)

Ambiguous At least four [policeman]AttackerVictim were injured in clashesAttack. 18 (4.69%) 20 (5.33%)

Span The 1st [Brigade]AttackerAttacker took Karbala with a minimal fightAttack. 12 (3.12%) 14 (3.73%)

Coreference HeDefendant skipped bail during [his]Defendant trialHearing. 13 (3.39%) 23 (6.13%)

Table 12: Examples of the categories and results of the manual error analysis. In the examples, the triggers are shown
in bold texts with brown event types. The gold arguments are presented in underlined spans with red roles, while
predicted ones are [bracketed] followed by blue roles. Results are denoted with number counts and (percentages).
The rows of the error categories are sorted by the gap between SRL and supervised counts.

• Span mismatch, where the main contents are
captured with non-crucial boundary mismatches.

• Head mismatch, where the main contents are
roughly captured but not with the exact annotated
words. This happens mostly in appositions or
noun modifiers with more specific content.

• Role misunderstanding, where the semantic
meaning of a role is not correctly understood.

• Local inference, where correct predictions re-
quire semantic inference at the local clause.

• Global understanding, where correct predictions
require global understanding of the full context.

• Others, where the error does not fall into any of
the above categories.

Examples of these categories and the results are
shown in Table 12. According to the statistics, the
main gaps between the SRL and supervised mod-
els are in the categories of role misunderstanding,
lacking of semantic inference as well as head mis-
matches. Head mismatches are due to the discrep-
ancies between syntactic head and semantic core
words, and might not cause severe problems. The
first two are more semantic errors that are related to
the essence of the EAE task. Role misunderstand-
ing may be related to template mismatches, where
roles in the SRL templates are different than those
in target event ones. Lacking of semantic inference
is mostly upon distant arguments. Though the ar-
gument augmentation techniques recover certain
distant arguments for SRL frames, this problem
is still far from being solved. Notice that these
semantic errors reveal the main difficulties of the
EAE task, which even supervised systems have not

Role QA SRL +shuf. +distill +both

Place 51.73 47.10 46.94 56.46 57.38
Attacker 34.59 56.52 59.03 57.88 58.19
Entity 38.02 40.96 43.97 41.59 43.36
Target 33.15 38.62 38.66 37.59 39.04
Victim 66.98 80.58 81.18 79.27 79.49
Artifact 13.95 49.52 62.82 46.47 60.54
Person 58.53 71.82 72.16 73.46 73.20

Recipient 45.75 46.68 47.51 50.64 49.37
Destination 66.11 65.97 66.14 68.02 66.00
Instrument 34.28 40.00 47.05 43.54 49.56

Table 13: F1% score breakdowns by argument roles.

yet fully tackled. To solve these problems, more
comprehensive semantic understanding is required.

B.7 Role Breakdowns

We perform breakdowns on argument roles on ACE
with the zero-shot models. Table 13 shows the
results of the top-ten frequent roles. Interestingly,
distillation generally helps more on the non-core
roles, such as PLACE and DESTINATION, while
shuffling enhances core roles, like ATTACKER and
VICTIM. Finally, applying both could lead to the
overall best results.

B.8 Speed Comparisons

We also perform decoding speed comparisons to ex-
amine the efficiency of different querying strategies.
The results are shown in Table 15. There are no sur-
prises that the simplest CLF strategy achieves the
highest decoding speed since its input sequences
are the shortest and there is no further complex
query encoding. TSQ is only around 10% slower,
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Event Template Role questions

Expression agent express theme What is expressed?
Transcription agent transcribe theme What is transcribed?
Catabolism agent degrade theme What is degraded?

Phosphorylation agent phosphorylate theme What is phosphorylated?
Localization agent localize theme What is localized?

Binding agent bind theme1 to theme2 What is bound?
What is something bound to?

Regulation cause regulate theme What causes the regulation?
What is regulated?

Table 14: Manually specified templates and role questions for GENIA events (“agent” is a dummy role introduced
to form the templates in active voice).

Method Single-instance Batched

CLF 184 316
MRC 106 146
GEN 28 144
TSQ 167 281

Table 15: Decoding speed (instances per second) com-
parisons of different role querying strategies. We evalu-
ate both single-instance and batched decoding modes.

but still efficient compared with the other two meth-
ods, where MRC suffers from multiple forwarding
for different role queries and GEN requires auto-
regressive decoding at testing time.

C Further Extensions

C.1 GENIA Details

For the GENIA experiments, one more assumed in-
put is the protein entities, following the settings of
BioNLP shared task. Since our model-predicted ar-
gument head words might not match the protein en-
tities, we perform a syntax-based post-processing
heuristic. For a predicted argument word, we check
its descendants in the dependency tree and relocate
the argument to the highest node that belongs to
an entity (or an event for the “Theme” of “Regula-
tion”). If no such items can be found, the prediction
is ignored. The evaluation metric is approximate re-
cursive matching using the official online service.36

For the GENIA events, we manually specify tem-
plates, which are shown in Table 14. We also man-
ually specify role questions since the templated
questions mostly fail in this scenario. For the three
regulation events, we simply adopt the same spec-
ifications since no obvious differences are found
when adding modifiers of “positively” or “nega-

36http://bionlp-st.dbcls.jp/GE/2011/
eval-test/

Language Model Pearson Spearman

Arabic w/o SRL 0.6050 0.6727
w/ SRL 0.5157 0.1394

Chinese w/o SRL 0.6910 0.5636
w/ SRL 0.5025 0.2727

Table 16: Correlations between relative role order dif-
ferences and performance gaps to supervised systems
for multi-lingual EAE (with top-10 frequent roles).

tively”. Since our SRL templates are all formed in
active voice, we introduce a dummy “agent” role
to form non-passive GENIA templates. The predic-
tion of this dummy role is ignored in testing.

C.2 Multi-lingual Analysis
One interesting aspect of the multi-lingual scenario
is how the predictions are influenced by the word
order difference between the source and target lan-
guages. We analyze the influence by measuring the
performance differences in different roles. We first
calculate the directional statistics for each role in
each language, specifically: for a role in a language,
what percentage of its arguments appear after the
trigger? For example, “Attacker” appears after the
trigger 26.9% of the time in English, while this per-
centage is 72.7% in Arabic. Then for each role, we
have a source-target order difference metric, which
is the absolute value of the frequency difference.
We further calculate the performance differences
between a transfer model trained with English data
and a supervised model directly trained on the tar-
get language. Finally, we measure the correlation
between the order differences and performance dif-
ferences for the top-ten frequent roles in each lan-
guage. The results for the transfer model with or
without (multi-lingual) SRL intermediate training
are shown in Table 16. Interestingly, if directly
transferring from English to the target languages,
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Figure 6: RAMS results (same- or cross-sentence argu-
ment F1%) with or without SRL intermediate-training.

there are at least moderate correlations between
the order differences and performance gaps. While
using SRL, the correlations decrease probably be-
cause of the extra signals about the target language
order in the SRL data. This shows that order dif-
ferences may be a major factor influencing the ef-
fectiveness of the cross-lingual transfer. Currently,
our templates are all English-styled and it would
be an interesting future direction to explore the
influences of template specifications such as role
orders.

C.3 More Multi-sentence Results
We also perform intermediate training on the
RAMS dataset with different amounts of target
training instances. The test results are shown in
Figure 6. The same-sentence patterns are similar
to those in previous ACE experiments, while SRL
seems to be able to provide small but consistent
benefits for cross-sentence arguments.
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