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Abstract

Despite recent explosion of interests in in-
context learning, the underlying mechanism
and the precise impact of the quality of demon-
strations remain elusive. Intuitively, ground-
truth labels should have as much impact in
in-context learning (ICL) as supervised learn-
ing, but recent work reported that the input-
label correspondence is significantly less impor-
tant than previously thought. Intrigued by this
counter-intuitive observation, we re-examine
the importance of ground-truth labels in in-
context learning. With the introduction of two
novel metrics, namely Label-Correctness Sen-
sitivity and Ground-truth Label Effect Ratio
(GLER), we were able to conduct quantifiable
analysis on the impact of ground-truth label
demonstrations. Through extensive analyses,
we find that the correct input-label mappings
can have varying impacts on the downstream
in-context learning performances, depending
on the experimental configuration. Through
additional studies, we identify key components,
such as the verbosity of prompt templates and
the language model size, as the controlling fac-
tor to achieve more noise-resilient ICL.

1 Introduction

Large-scale language models (Rae et al., 2021;
Chowdhery et al., 2022; Smith et al., 2022; Thop-
pilan et al., 2022) have shaped the NLP scene
by introducing in-context learning (ICL) (Brown
et al., 2020) as a novel approach to adapt language
models for downstream tasks without explicit fine-
tuning. ICL enables language models to learn
and predict from task-specific prompts that con-
tain demonstrations in the natural language format,
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Figure 1: A demonstration of cases where the effect of
the ground-truth label in in-context learning is much
more significant than the aggregated results reported by
Min et al. (2022b).

despite the language models were only trained to
predict the next word token. Inspired by the new
discovery, a flurry of recent work has investigated
ways to explain and exploit the ICL mechanism
(Schick and Schütze (2021a); Lu et al. (2022); in-
ter alia), but it remains elusive.

Min et al. (2022b) have recently re-evaluated the
role of input-label correspondence in demonstra-
tions for ICL. Specifically, the authors have shown
that the correct mapping between input and its label
contributes less to the final performance than we
thought compared to other aspects, including the
format of demonstrations and the awareness of the
input and label space. This finding is intriguing
and has been sensational, as it is counter-intuitive
to the expectation of how statistical learning typ-
ically works in supervised settings, and therefore
it shows a potential of exploiting (few-shot) in-
context learning given no real training data. For
example, prior work established the strong impact
of example ordering (Zhao et al., 2021), hence
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in-context learning being less sensitive to the cor-
rectness of label demonstrations, which forms the
basis of supervised learning, seems contradictory.

However, we encountered cases where the ob-
servation is inconsistent with the recent finding
on the matter (Figure 1). Specifically, we found
that the difference between the performance from
the ground-truth label demonstration and that from
entirely incorrect labels was as large as 80% (ac-
curacy) for the hate speech dataset (de Gibert
et al., 2018) on GPT-J (Wang and Komatsuzaki,
2021). Similar observations were found with the
larger GPT-3 (Brown et al., 2020) model and other
datasets (TREC (Li and Roth, 2002)). These cases
illustrate how sensitive in-context learning can
be to label demonstrations depending on the ICL
settings. Thus, we cast a doubt on whether the
trend can be generalized in diverse configurations,
raising a call for an in-depth analysis of the phe-
nomenon.

In this paper, we revisit the findings of Min
et al. (2022b) and take a closer look into the impor-
tance of ground-truth labels for in-context learning.
First, we point out limitations of the existing work.
Then, we introduce novel metrics, namely Label-
Correctness Sensitivity and Ground-Truth Label
Effect Ratio (GLER), to reveal that the input-label
correspondence plays a more vital role in contex-
tual demonstration than previously considered. Fur-
thermore, we show that the trend contradictory to
the previous discovery becomes salient if we di-
verge the experimental settings (e.g., datasets, met-
rics, and templates) from the previous work. We
observe the same trend in various language models,
such as GPT-J and GPT-3 (Brown et al., 2020).

In addition, this paper uses statistics to provide
a systematic and complementary perspective to the
existing findings on the label-demonstration impact.
To be specific, we combine linear regression and
auxiliary metrics to conduct all-around and deeper
analyses on how the ICL classification performance
changes against label-demonstration corruption. To
do so, we define the notion of sensitivity to quantify
the degree to which the downstream classification
performance changes when a model is subject to a
fixed amount of label corruption. As a result, we
demonstrate several noticeable patterns that sup-
port the claim that there is a considerable relation-
ship between the performance and label correctness.
It is worth noting that this trend was not clearly vis-
ible in the previous work, where the results of each

dataset are macro-averaged rather than individually
analyzed.

However, insensitivity, or robustness, towards
the incorrectness of label-demonstrations is a use-
ful property to have for many situations. For ex-
ample, when augmenting an extremely small num-
ber of (e.g., less than four) examples using data
augmentation techniques, exhibiting performance
resilience towards prompt templates that consist
of noisy synthetic examples as demonstrations is
desirable. We further analyze how different fac-
tors of ICL, such as the inference method, the un-
derlying language model, and the adoption of ad-
vanced ICL strategies, affect the performance sensi-
tivity towards noises in input-label demonstrations,
paving the way for a new approach to exploiting
the demonstration insensitivity.

In summary, our contributions are as follows.

• We re-examine the recent findings on the phe-
nomenon that the ICL performance is insensi-
tive towards input-label demonstrations.

• We propose two new quantifiable metrics, sen-
sitivity and GLER, to measure the impact of
ground-truth label demonstrations on ICL.

• We conduct a thorough examination of how
different components of ICL could impact the
model’s insensitivity towards label noises, al-
lowing future work to exploit such property.

2 Looking Deeper into Ground-Truth
Labels

Demonstrations of ground-truth labels2, correctly
paired with inputs, have been known to be a crucial
factor of supervised learning, but a recent work by
Min et al. (2022b) purportedly revealed the pos-
sibly counter-intuitive nature of label demonstra-
tions in in-context learning (ICL). Specifically, the
findings implied that the correctness of input-label
correspondence in in-context demonstrations is not
as important as we have thought. We name this phe-
nomenon input-label insensitivity. Although the
finding was supported by reasonably large-scale
experiments, covering various experimental vari-
ables such as datasets, language models, in-context
learning types, etc., we found that, through deeper
analysis of the experiments, input-label insensitiv-
ity is not consistent across all experimental settings.

2Here, label demonstrations refer to the demonstration of
input-label correspondence and not the demonstration of label
space.
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Figure 2: A counter-example of slightly varied but equally valid experimental settings is shown on the right, while
the results from the prior experimental settings (Min et al., 2022b) is shown on the left. “No Demo” refers to the
result without demonstrations and “Random Label” refers to the result with label demonstrations replaced with a
random label uniformly sampled from the label space. Minor variations in the experimental settings could result in
a large difference in the degree of which the ICL performance responds to the label corruption. More details on the
experiment is described in Appendix A.

This section highlights the limitations of the ex-
isting work, proposes new metrics to quantify the
impact of input-label correspondence, and finally
presents deeper analyses of the ICL experiments
utilizing the newly proposed metrics.

2.1 Limitations of the Existing Work

Min et al. (2022b) showed that replacing ground-
truth labels in prompt demonstrations with incor-
rect labels marginally affects the mean-aggregated
overall performance on selected datasets. Although
the input-label insensitivity phenomenon was less
prominent on GPT-J with the direct ICL method,
the ICL still performed better when entirely incor-
rect labels were given than the absence of demon-
strations (the zero-shot baseline), allegedly sup-
porting the input-label sensitivity idea (Min et al.,
2022b). However, we argue that there are mainly
two limitations to the existing claim.

Over-generalization The existing claim suffers
from over-generalization in two regards: (1) the
mean-aggregated results fails to capture the insen-
sitivity behavior in individual tasks and (2) the pro-
posed experimental settings in the existing work
is not general enough to be fully supportive of the
claim. Mean-aggregation does not paint the full pic-
ture without the information on the variance. Fur-
thermore, individual analyses on large-scale tasks
are needed to obtain precise insight into input-label
sensitivity. Our deeper analyses on the ICL experi-
ments (§2.4) provide more evidence of this claim.

The second over-generalization is supported by
the existence of a counter-example: higher input-

label sensitivity observed from a slight varied but
equally valid experimental settings (Figure 2). The
subfigure on the left corresponds to the result of
an existing set of experimental settings, where the
Noisy Channel method (Min et al., 2022a) was
used for ICL, the macro-F1 score for the evaluation
metric, and the five classification datasets listed
in the existing work. The subfigure on the right
has been obtained using (Direct) method, the accu-
racy score as metric and results were aggregated
from all 17 datasets listed in the existing work (see
AppendixA).

Lack of Quantification Existing work relies on
human judgement to determine the input-label sen-
sitivity, which could be subjective. Furthermore,
we are not only interested in whether the input-
label insensitivity phenomenon exists but also how
insensitive the ICL is towards the demonstrations,
enabling us to exploit the phenomenon. Hence, a
set of systematic quantification methods is needed
to perform the deeper analyses.

2.2 Key Concepts

This subsection establishes key concepts and nota-
tions related to our analysis on the impact of input-
label demonstrations and the downstream ICL per-
formance. x and c denote the input and the label
respectively. They exist in each respective input
(X ) or label space (C) associated with the dataset
or task. A language model P predicts the next
token given the preceding tokens: P (xt|x<t). In
ICL, a prompt P is designed to elicit particular
behaviors from the language model. For exam-
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ple, to utilize the language model as a text classi-
fier, a prompt template T takes a set of examples
Dex = {(x1, c1), ..., (xk, ck)} and a test input x to
produce the prompt P . The prompt is then fed into
the language model to produce the most plausible
continuation: argmaxx′P (x′|P). A task-specific
verbalizer V is designed to interpret the generated
output x′ into the label space C. We measure the
performance y of the language model P and the
prompt template T on a test set Dtest.

Our analyses mainly involve manipulating T and
the example set Dex to set-up baselines and conduct
ablation studies. Key experimental set-ups include:
No Demo, or denoted as “zero-shot”, represents
zero-shot predictions, where the prompt template T
ignores Dex and only uses the test input x: P (c|x).
The example set Dex in α%-Correct consists k ×
a/100 correct input-label pairs and k×(1−a/100)
incorrect pairs where (0 ≤ a ≤ 100). For Random
Label, the labels c in Dex are replaced by uniform
samples from the label space C, and it is one of the
key baselines of our studies. Additional details on
the set-up variations are presented in Appendix A.

2.3 Metrics for Measuring the Impact of
Input-Label Demonstrations

This section proposes two new metrics to quantify
the impact of input-label demonstrations in ICL.

Label-Correctness Sensitivity We define label-
correctness sensitivity, or sensitivity for short, as
the degree of which the downstream classification
performance changes when the model is subject to
a fixed amount of label corruption. Sensitivity in
the context of in-context learning demonstrations
can be computed by conducting the single-scalar
linear regression analysis on a performance metric
(e.g., accuracy or F1-score) y against the percent-
age of examples that are labelled correctly (s):

y = β0 + β1s

where β0 is the bias and β1 is the coefficient of
label correctness. The scalar value of the weight
parameter β1 is interpreted as the sensitivity mea-
sure. The data points for linear regression were
obtained by following the experimental protocol
proposed by Min et al. (2022b). The sensitivity
measure can be interpreted as a linearly interpo-
lated measure of performance degradation for each
unit decrease in label correctness.

Ground-Truth Label Effect Ratio (GLER) An-
other way to understand the impact of labels,
namely correct or ground-truth labels, is to quantify
how much the ground-truth labels improve the ICL
performance compared to the random-label base-
line. The higher the gap, the bigger the impact the
ground-truth labels have on the performance. The
gap is then normalized by the performance differ-
ence between ground-truth labels and the absence-
of-demonstration baseline (zero-shot):

GLER =
yGT − yRL

yGT − y∅
(1)

where yGT is the ground-truth label performance,
yRL the random-label baseline (Random-Label),
and y∅ the zero-shot performance. The denomina-
tor in Equation 1 is intended to allow the GLER
metric to be compared across different tasks. Addi-
tionally, we clip GLER to be bounded between 0
and 1.

2.4 Deeper Analyses

This subsection performs deeper analyses using
the aforementioned metrics to reveal additional in-
sights into input-label insensitivity.

2.4.1 Experimental Setup
All of our experiments mentioned in the rest of
the paper generally follows the experimental set-
tings in Min et al. (2022b), where α%-Correct
is mainly utilized to conduct sensitivity analysis.
However, there are key differences: (1) we do not
employ label-length normalization (in our exper-
iments length normalization does not always in-
crease the performance), and there are minor tem-
plate T design differences, including how the sepa-
rator token interacts with the model and the dataset-
specific implementation of data preprocessor; (2)
we use accuracy, instead of F1-score, as the primary
evaluation metrics for ICL performance. However,
we do report the full results in Appendix A, along
with the full details of the setup.

2.4.2 Label Correctness Does Affect
Performance

To analyze the overall sensitivity of performance
under the variation of label correctness, we aggre-
gate sensitivities across all 17 classification datasets
and the results are shown in Table 1. The results
show that the aggregated sensitivity is significantly
high with good fit (in the range of 0.81-0.86) for all
configurations. When tested on our specific setup,
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Method Coefficient Intercept R2

GPT-NeoX Direct 0.300 0.327 0.810
GPT-J Direct 0.309 0.291 0.861

Table 1: Aggregated linear regression analysis on the
performance against the percentage of correct labels.
“Ours” indicates that the data points for the linear regres-
sion analysis were obtained using our proposed experi-
mental settings (Appendix A).

(a) GPT-NeoX

(b) GPT-J

Figure 3: Individual scatter-plots of the proposed met-
rics, sensitivity and GLER, across two models (GPT-
NeoX and GPT-J) and 17 datasets. We also report the
nominal ground-truth label accuracy values to further
showcase the highly varied nature of the tasks.

the sensitivity was as high as 0.309, implying that,
on average, there was a 0.309% drop in accuracy
for each percentage drop in label correctness.

The trend of sensitivity, which is more appar-
ent in our quantitative analysis, may have been
overlooked due to the relative dwarfing effect from
zero-shot (or “no demo") results in prior studies.
The results also show that the sensitivity is lower
in the Channel method,3 suggesting that sensitivity
can be significantly lowered with the employment
of more advanced ICL methods.

2.4.3 Label Demonstration Impact is Highly
Varied Across Tasks and Settings

Although the aggregating analysis shows a general
sensitive trend towards demonstration correctness,

3We hypothesize that this observation is attributed to the
fact that, while generating longer sentences, prediction dis-
tribution from Channel model are more affected by the pre-
trained prior rather than the current context.

Figure 4: A scatter plot of sensitivities of 17 datasets
against the corresponding task difficulties measured us-
ing the relative performance. The Direct approach is
colored in orange and the Channel approach is colored
in blue. The dashed vertical line indicates a neutral
performance level where there is no difference with the
random baselines. More details is found in Appendix C.

individual analyses shed deeper insight into the
distribution of task sensitivities. Individual sensi-
tivity plots are illustrated in Figure 3. Sensitivity
can vary from small negative values (indicating
increasing performance under increasing label cor-
ruption) to value as high as 0.815 (for the hate
speech dataset), suggesting that summarizing the
trend for all tasks and datasets may be difficult
and that certain datasets may possess distributional
properties that allow models to more easily exploit
label demonstrations. This high-variance obser-
vation is valid for other metrics (GLER and the
ground-truth label performance) as well. Further
analyses are available in §3

2.4.4 Sensitivity and Task Difficulty
Tasks where the model struggle to exploit in-
context demonstrations may exhibit low sensitiv-
ity towards them, since understanding patterns in
demonstrations is inherently linked with the abil-
ity to absorb demonstrative label-supervision. To
confirm our theory, we conduct an analysis on the
sensitivities of 17 datasets against the task difficulty.
We define task difficulty as the relative performance
of ground-truth label demonstrations compared to
a baseline. Specifically, relative performance yrel
is computed by yrel = yGT − ybaseline. We consider
the random baseline.

Our analysis (Figure 11) shows that the model’s
performance sensitivity is strongly related to the
difficulty of the task. The tasks, where the model
exhibits low sensitivity (i.e. < 0.1), struggle
to achieve meaningful classification performance.
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This suggests that designing experiments with
datasets that can be meaningfully solved using in-
context learners may be more important than previ-
ously understood. Hence, the sensitivity measure
by itself is insufficient for benchmarking the impact
of input-label demonstrations.

3 When Do the Ground-Truth Labels
Actually (Not) Matter?

As revealed in our deeper analyses (§2.4), many
factors including datasets and the choice of the ICL
method can significantly affect the label-sensitivity.
Gaining more understanding of the mechanism by
which the input-label correspondence impacts the
downstream ICL performance could enable us to
systematically exploit the label-insensitivity phe-
nomenon. For example, few-shot ICL models can
be improved to tolerate label noises from synthetic
data samples generated in the joint input and label
spaces (Yoo et al., 2021).

To understand the conditions that reduce the la-
bel sensitivity, we conduct a series of experiments
that investigate different factors contribute to the
phenomenon quantified using the metrics proposed
in §2.3. Namely, we consider the particular techni-
cal choice in carrying out ICL (whether to employ
the noisy channel method (Min et al., 2022a) and
the likelihood calibration (Zhao et al., 2021)), vari-
ous properties of the prompt template (the number
of in-context examples and the verbosity), and the
model size.

Sensitivity and GLER Recall that the sensitivity
measure is the nominal coefficient of the linear line
fitted on the performance-versus-label-corruption
data points. Since baselines can vary depending on
the experimental setting, hyperparameters and the
dataset4, comparing the nominal sensitivity alone
can be inconclusive, as the same degree of absolute
improvement has different implications depending
on the baseline level. To account for the variations
in the characteristics of the task and the model, we
consider GLER and the ground-truth label perfor-
mance as the auxiliary measures in the following
studies.

3.1 Techniques for In-context Learning
In-context learning, as first proposed by Brown
et al. (2020), is a straightforward parameter-free

4For example, under the same conditions (GPT-J and Di-
rect inference), the random-label accuracy baseline is 28.08
for TREC and 53.58 for SST2.
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Figure 5: The effect of switching the ICL inference
method from Direct to Channel. Employing the Noisy
Channel method improves insensitivity while improving
the overall ICL performance.

approach, where the downstream task of interest is
expressed as natural text demonstrations and used
to conditionally generate from a language model.
Recently, Min et al. (2022a) proposed Noisy Chan-
nel (denoted as Channel) that exploits the language
generation capability of language models for dis-
criminative tasks using the Bayes’ Theorem. We
compare the two ICL methods on all three (sensi-
tivity, GLER, and the ground-truth label ICL accu-
racy) measures.

Results (Figure 5) show that Channel reduces the
label-sensitivity on average compared to the origi-
nal Direct method while maintaining the Accuracy
on similar levels. The label insensitivity effect is
observed in both GPT-NeoX and GPT-J.

Another recent advance in ICL, namely Calibrate
Before Use (CBU), involves calibrating the output
likelihood of the word tokens that correspond to
the labels (Zhao et al., 2021). We conduct the
same set of experiments with CBU applied and
report all three metrics. As shown in Figure 6, the
calibration technique reduces the label sensitivity
while generally improving the ICL performance on
both GPT-J and GPT-NeoX. Applying CBU can be
an effective way to reduce label sensitivity while
not sacrificing the performance.
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Figure 6: The effect of applying Calibrate Before Use
(CBU) (Zhao et al., 2021). Label sensitivity decreases
but the ground-truth label accuracy improves, making
CBU ideal for sensitivity reduction. This trend is more
apparent in the larger GPT-variant, GPT-NeoX (20B).

3.2 Prompt Templates

Various design choices in in-context prompt tem-
plates have significant impact on the downstream
ICL performance (Reynolds and McDonell, 2021).
A well-designed and verbose prompt template (e.g.,
a prompt with detailed description of the task)
could allow in-context label demonstrations to have
relatively less impact on ICL, thereby reducing the
label-demonstration sensitivity.

This section mainly explores (1) the number of
in-context examples and (2) the level of task de-
scription details. To quantify the impact of the
number of in-context examples, we conduct the
same set of experiments with varying number of
in-context examples, ranging from 1 to 16. Re-
sults (Figure 7a) unsurprisingly show that the num-
ber of prompt examples is positively linked to all
three metrics. Although sensitivity rises with the
number of examples, this is due to the final ICL
performance and the impact of ground-truth labels
improving with more demonstration examples.

We also hypothesize that the level of task details
contained in the prompt template also serves to
relatively weaken the label demonstration impact.
Results in Figure 7b confirm our hypothesis.

3.3 Model Sizes

The scale of the language model could influence
how susceptible the model is to label noises within
input-label demonstrations. The larger the model
is, the more prior knowledge the model could lever-
age to reduce label sensitivity. To study whether
this is the case, we analyze five different sizes of
GPT-style language models, ranging from GPT-2
XL to GPT-35. The choice of models and the corre-
sponding number of parameters are listed in Figure
8. Results show that sensitivity is generally corre-
lated with the model size, but we also observe a
plateauing phenomenon after the GPT-J 6B scale.
However, the results on the ICL performance with
ground-truth label demonstrations shows that the
performance scales well beyond the 6B mark,

4 Discussion

This section provides additional evidence that the
demonstration of ground-truth labels can be more
important than the previous finding suggests and
that existing interpretation of the experimental re-
sults may have been obfuscated by the entangle-
ment of various aspects of demonstrations.

4.1 The Complementary Relationship
between Input-label Correspondence and
Label-space Demonstrations

Input-label correspondence is just one of the as-
pects of possible in-context label demonstrations,
the others including label-space demonstration.
However, it is unclear whether label-space and
input-label correspondence can complement each
other in the absence of explicit demonstration of the
other. For example, pretrained language models
may be able to deduce sentence-sentiment map-
pings from the mentions of sentiment labels alone
through inductive bias.

Prior work (Min et al., 2022b) showed signif-
icant performance degradation in the absence of
both aspects of label demonstration, but the results
beg the question: could the significant degrada-
tion have been caused by complete lack of label
demonstration? To find out, we conduct additional
ablation studies to study the performance under the
demonstration of input-label pairings but not of the
explicit label space which we call prior-free label
experiments.

5Note that the general trend along the model scale per-
sists with mixed language model architectures, as reported by
Srivastava et al. (2022)
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Figure 7: Results for varying prompt sizes and prompt verbosity. The sensitivity, impact ratio, and final ground-truth
label performance are all positively correlated with the number of prompt examples. For template verbosity, the
sensitivity and the impact ratio decreases with the increase in versbosity, but the performance does not deterioriate.
Results for GPT-NeoX (20B) are colored blue, while GPT-J (6B) is colored red.
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Figure 8: Comparison of sensitivity, GLER, and the ground-truth label ICL accuracy across different model sizes,
ranging from GPT2-XL (1.5B) to GPT-3 (175B). Sensitivity and GLER plateau from the six-billion scale (GPT-J)
while the ground-truth label performance continues to improve as the model size scales up.

Specifically, we study the case where class labels
are replaced with prior-free labels while maintain-
ing the correspondence between the input and the
labels. For example, “positive” and “negative” la-
bels in sentiment analysis can be replaced with “0”
and “1” labels respectively, which do not reveal
the information about the labels themselves. How-
ever, language models can still capture mild label-
associations in abstract symbols through inductive
bias (Ouyang et al., 2022). To diversity “prior-free”
choices, we consider (1) random tokens from the
language model’s word space, (2) alphabets, and
(3) numerical labels6.

As shown in 9, results on prior-free labels outper-
form that of the random labels (with random input-
label mappings), indicating that language models
are capable of capturing the input-label correspon-
dence even in the absence of label-space demon-
strations. Among the prior-free results, we note
that the alphabetical and numerical labels outper-

6We exclude “0” since it is often associated with the state
of nil

form random-token labels. This could be explained
by the fact that, since random word tokens may
introduce unintended biases through misleading as-
sociation with unrelated word semantics, abstract
labels provide better prior-free environment.

4.2 Change in label distribution may result
the higher sensitivity.

The distribution of labels in demonstration is one
of the critical factor for the prediction (Zhao et al.,
2021). When data imbalance exists, corrupting
the labels cause distributional shift which may
lead performance change regardless of the input-
label mappings. High sensitivity in imbalanced
dataset may be due to this unintentional distribu-
tional shift. To analyze the impact of distributional
shift, we conducted additional experiments using la-
bel balanced demonstrations for imbalanced dataset
(hate_speech18, ethos-race, ethos-national_origin,
ethos-religion).

As shown in 10, using balanced demonstrations
degrade the performance and sensitivity when com-
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Figure 9: The results of “label prior-free” experiments
(on 8 text classification datasets), where we control the
prior information of the class labels. Here, the labels
are replaced with tokens that are unrelated to the label
semantics while still maintaining the input-label map-
pings. The replacement tokens include alphabet tokens,
numeric tokens, and random word tokens from the lan-
guage model’s word space (“rand token”). The baselines
obtained from the ground-truth labels and random la-
bels are denoted as “GT” and “rand label” respectively.
Results strongly suggest that language models are still
able to utilize input-label demonstrations without access
to label priors.

pared to demonstrations sampled from data distri-
butions which supports our suspicion. On the other
hand, average sensitivity are 0.189 and 0.308 (for
GPT-NeoX and GPT-J respectively) even in bal-
anced demonstrations setting which supports the
importance of input-label demonstrations.

5 Related Work

As the scale of language models becomes larger
(Rae et al., 2021; Chowdhery et al., 2022; Smith
et al., 2022; Thoppilan et al., 2022), fine-tuning be-
comes prohibitively expensive due to the space and
time complexities. As an alternative, in-context
learning (ICL) (Brown et al., 2020) has shown
to be an effective parameter-free learning strategy
by prompting language models with task-specific
prompt templates. Since then, a plethora of works
has investigated both the properties of the learning
mechanism (Schick and Schütze, 2021b; Reynolds
and McDonell, 2021; Kim et al., 2021; Zhao et al.,
2021; Lu et al., 2022; Min et al., 2022b). Although
numerous efficient fine-tuning strategies have been
proposed in the past (Li and Liang, 2021; Hu et al.,
2022; Lester et al., 2021), the absence of an explicit
training step in ICL has enabled it to retain its own
class of adapting large-scale language models.
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Figure 10: The effect of using label balanced demonstra-
tions in 5 imbalanced datasets. Employing the balanced
demonstrations degrade all metrics due to the distribu-
tional shift in label demonstrations. However, sensitiv-
ity is still significant which supports the importance of
input-label demonstrations.

6 Conclusion and Future Work

In this work, we took a closer look at how input-
label relationships affect the in-context learning
performance. To quantitatively analyze the impact
of input-label mappings in in-context learning, we
proposed novel metrics, GLER and input-label sen-
sitivity. Through extensive experiments, we found
that the integrity of the input-label mapping is a cru-
cial factor in performing ICL. We also conducted
ablation studies to reveal various conditions that
allow ICL to improve insensitivity towards label
corruptions (while still maintaining a healthy per-
formance). For future work, based on the current
findings, we will investigate whether we could ex-
ploit data augmentation for extremely low-resource
situations for ICL.

Limitations

PLMs are over sensitive to the choice of prompts.
As it is widely known that performance of the
PLMs is highly sensitive to the choice of the
prompts (Brown et al., 2020; Lu et al., 2022;
Zhao et al., 2021). Prompt engineering to find
the optimal prompt was not feasible considering
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the amount of datasets and settings that we experi-
mented. The findings from this work may differ de-
pending on the choice of prompts. However, to min-
imize this limitations the templates and prompts
are adopted from well studied previous works as
much as possible.

Ground-truth label demonstrations are just one
piece of the puzzle. According the full analy-
sis from Min et al. (2022b), other components
of demonstrations not covered in this paper (e.g.,
input-space demonstrations) exhibit even stronger
impacts on ICL. Although our experiments were
designed to analyze solely the impact of input-label
correspondence, disentangling diverse aspects of
demonstrations is highly difficult as mentioned in
section 4. Other factors such as label distribution
may have unexpectedly influenced the results.

Huggingface Implementation. We use Hugging-
face implementation of GPT-NeoX. To our knowl-
edge, current version of GPT-NeoX in Huggingface
under performs when compared to the original im-
plementations from Black et al. (2022).
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A Details on Our Experimental Settings

A.1 Model
We mainly experiment with GPT-Neox 20B (Black
et al., 2022) and GPT-J 6B (Wang and Komatsuzaki,
2021) which are publicly released, decoder-only,
dense LMs. However, in Section 3.3 we also in-
clude GPT2-XL 1.5B (Radford et al., 2019), GPT-
Neo 2.7B (Black et al., 2021), GPT-3 175B (Brown
et al., 2020).

A.2 Full Dataset
We evaluate on 17 text classification datasets cov-
ering diverse tasks including sentiment analysis,
paraphrase detection, natural language inference,
hate speech detection and diverse domains includ-
ing science, social media, finance, and more. All
datasets are from Huggigface datasets (Lhoest et al.,
2021). Full list and details about the datasets are
provided in Table 2.

As mentioned in Section 2.4.4, sensitivity highly
depends on relative performance. In order to effec-
tively capture correlation between sensitivity and
diverse factors in Section 3, we evaluate on subset
of 8 datasets, datasets with high relative perfor-
mance, in Section 3. 8 datasets include glue-sst2,
glue-rte, super_glue-cb, trec, financial_phrasebank,
medical_questions_pairs, sick, and tweet_eval-hate.
Due to limited resources, we only run experiments
on 6 datasets in Section 3.3.

A.3 Metric
We use accuracy as our primary metric. Accuracy
is commonly used metric in multi-class classifica-
tion which intuitively show how well the model
performs. F1 score takes into account how the
data is distributed thus it is useful when you have
data with imbalance classes. However, F1 is less
intuitive since it measures the trade-off between
precision and recall. Moreover, F1 score can vary
regarding the averaging method in multi-class clas-
sification.

A.4 Template
We use 3 types of templates regarding engineering
cost and verbosity of templates. First, as a baseline
template we used minimal template following (Ye
et al., 2021; Min et al., 2022b). We use minimal
template throughout the paper. For ablation 3.2,
we also evaluate manual templates and Verbose
template. Templates are adopted from prior works
(Brown et al., 2020; Zhao et al., 2021; Min et al.,

2022b; Bach et al., 2022) if possible. Details and
examples regarding the templates are in Table 3.
Additionally, for Section 3.1 CBU experiment we
use Manual template as the baseline since in our
preliminary experiments, applying CBU in Min-
imal template degrade the performance in some
cases.

Even though we use the same minimal template
as Min et al. (2022b), there are minor difference
in dataset-specific implementation of data prepro-
cessor. (e.g., input sentences of glue_mrpc dataset
used in Min et al. (2022b) have prefix "sentence1:
") Therefore, LMs may have slightly different be-
havior with same the dataset.

A.5 Other details
Unless otherwise specified, we use k = 16 ex-
amples as demonstrations which are sampled at
uniform from the training data. We run all ex-
periments 5 times using different seeds. Due to
limited resources, we only run experiments once
for GPT-3. For all models expect for GPT-3, we
used implementation and models from Hugging-
face transformers library (Wolf et al., 2020). For
GPT-3 we used OpenAI API, assuming that model
"davinci" is GPT-3 175B. When calculating the
probability of label tokens, we do not normalize
the score by the length of the tokens unlike in Min
et al. (2022b). Our implementation is available at
https://github.com/juny116/ICL-DeepSpeed.

A.6 Corrupting input-label mapping
To see the detail impact of the ground truth input-
label mapping, we revisit the experiments from Min
et al. (2022b) Specifically, we replace fix amount of
correct labels to incorrect labels in demonstrations
and compare the end task performance.

• No demonstrations is a zero-shot prediction
made via argmaxy∈CP (y|x), where x is the
test input and C is a small discrete set of pos-
sible labels. Verbalizers are used for mapping
tokens to class.

• Demonstrations w/ a% correct labels con-
sist k×a/100 correct pairs and k×(1−a/100)
incorrect pairs where (0 ≤ a ≤ 100). A con-
catenation of k input-label pairs where a%
labels are correct is used to make a prediction
via argmaxy∈CP (y|x1, y1, ..., xk, yk, x).

• Demonstrations w/ random label is formed
with replacing correct labels to random labels
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Dataset Train Eval Class

glue-sst2 (Socher et al., 2013) 67,349 872 2
glue-rte (Dagan et al., 2005) 2,490 277 2
glue-mrpc (Dolan and Brockett, 2005) 3,668 408 2
glue-wnli (Levesque et al., 2012) 635 71 2
super_glue-cb (de Marneffe et al., 2019) 250 56 3
trec (Voorhees and Tice, 2000) 5,452 500 5
financial_phrasebank (Malo et al., 2014) 1,181 453 3
poem_sentiment (Sheng and Uthus, 2020) 843 105 3
medical_questions_pairs (McCreery et al., 2020) 2,438 610 2
sick (Marelli et al., 2014) 4,439 495 3
hate_speech18 (de Gibert et al., 2018) 8,562 2,141 4
ethos-national_origin (Mollas et al., 2022) 346 87 2
ethos-race (Mollas et al., 2022) 346 87 2
ethos-religion (Mollas et al., 2022) 346 87 2
tweet_eval-hate (Barbieri et al., 2020) 9,000 1,000 2
tweet_eval-stance_atheism (Barbieri et al., 2020) 461 52 3
tweet_eval-stance_feminist (Barbieri et al., 2020) 597 67 3

Table 2: Datasets used for the experiment.

that are randomly sampled at uniform from C.
Since the labels are sampled at uniform from
C, the distribution of labels in demonstration
may change from sampled inputs.

• Demonstrations w/ shuffled label is formed
with randomly shuffling correct labels to other
labels within the sampled k inputs. The dis-
tribution of labels in demonstration does not
change from sampled inputs.

• Majority class baseline is a ratio of major-
ity class within the test data. Since there are
some datasets that have distributional imbal-
ance, this can be a good indicator of how well
the in-context learning is working.

B Full Results

Full experiment results on 17 datasets with GPT-
NeoX are in Table 4 and results on 17 datasets with
GPT-NeoX are in Table 5.

C More Results on the Sensitivity vs Task
Difficulty Plot

Figure 11 shows scatter plots of sensitivities of
17 datasets against the corresponding task difficul-
ties measured using the relative performance with
respect to accuracy and F-1 scores. The Direct
approach is colored in orange and the Channel ap-
proach is colored in blue. The dashed vertical line
indicates a neutral performance level where there is
no difference with the random baselines. The best-
fit linear lines show a general trend of increasing
sensitivity with less task difficulty. Low sensitiv-
ity is strongly related to high task difficulty. Also,
the Channel approach helps in alleviating hyper-
sensitivity towards task difficulty.

(a) Accuracy

(b) F1-score

Figure 11: Scatter plots of sensitivities of 17 datasets
against the corresponding task difficulties measured us-
ing the relative performance with respect to each met-
rics.

D Label-Correctness Correlation

The first step of understanding the interaction be-
tween performance and input-label demonstration
is quantifying the correlation between the two vari-
ables. Although we considered this metric as one of
the foundation quantifying measures, we omit the
analyses results due to space constraints. The Pear-
son correlation analysis on GPT-J and the Direct ap-
proach (Figure 12) shows that the label-correctness
correlation is strong (i.e. larger than 0.9) for most
tasks on all performance measures. The macro-
average correlation across 18 tasks is 0.895 with a
p-value of 0.057, strongly supporting the linkage.
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Dataset Manual Template Verbalizer

glue-sst2
Review: a smile on your face
Sentiment:

negative, positive

meddical_questions_pairs
The DVD-CCA then appealed to the state Supreme Court .
The question is: The DVD CCA appealed that decision to the U.S. Supreme Court . True or False?
answer:

False, True

glue-rte
Oil prices fall back as Yukos oil threat lifted
The question is: Oil prices rise. True or False?
answer:

True, False

super_glue-cb
That was then, and then’s gone. It’s now now. I don’t mean I ’ve done a sudden transformation.
The question is: she has done a sudden transformation True or False?
answer:

True, False, Not sure

trec
Question: How can I find a list of celebrities ’ real names ?
Type:

description, entity,
expression, human,
number, location

sick
The young boys are playing outdoors and the man is smiling nearby
The question is: The kids are playing outdoors near a man with a smile True or False?
answer:

True, Not sure, False

tweet_eval-hate
Tweet: Hundreds of Syrian refugees return home from Lebanon - ABC News
Sentiment:

favor, against

Dataset Verbose Template Verbalizer

glue-sst2
Question : Is the following review positive or negative? a smile on your face
Answer:

negative, positive

meddical_questions_pairs

Question: Does the following two sentences mean the similar thing? True or False?
The DVD-CCA then appealed to the state Supreme Court .
The DVD CCA appealed that decision to the U.S. Supreme Court .
Answer:

False, True

glue-rte

Question: Does the first sentence entails the second sentence? True or False?
Oil prices fall back as Yukos oil threat lifted
Oil prices rise.
Answer:

True, False

super_glue-cb

Question: Does the first sentence entails the second sentence? True, False, or Neither?
That was then, and then’s gone. It’s now now. I don’t mean I ’ve done a sudden transformation.
she has done a sudden transformation
Answer:

True, False, Neither

trec
Question: Which category best describes the following sentence?
How can I find a list of celebrities ’ real names ?
Answer:

description, entity,
expression, human,
number, location

sick

Question: Does the first sentence entails the second sentence? True, False, or Not sure?
The young boys are playing outdoors and the man is smiling nearby
The kids are playing outdoors near a man with a smile
Answer:

True, Not sure, False

tweet_eval-hate
Question: Does the tweet convey the author’s hatred towards something or someone? True or False?
Hundreds of Syrian refugees return home from Lebanon - ABC News
Answer:

True, False

Table 3: Examples of Manual and Verbose templates. Texts in blue are manual templates.

Figure 12: Pearson correlation analysis on all 18 tasks.
A strong positive correlation is observed for all tasks
and metrics, except for outliers.
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Dataset Metric no demo 0% 25% 50% 75% 100% random label shuffled label

glue
sst2

Accuracy 74.54 70.67±7.40 70.880±7.40 70.80±10.61 78.44±18.24 88.26±5.07 84.93±11.29 84.31±9.43
F1 73.94 67.34±10.13 66.96±14.15 74.50±13.19 74.78±23.46 88.06±5.33 84.09±13.03 83.59±10.59

glue
rte

Accuracy 52.71 54.80±3.49 55.38±5.19 52.42±4.36 55.52±3.78 57.04±7.17 55.88±5.11 56.68±3.56
F1 34.52 47.52±7.80 48.50±9.19 45.33±5.71 51.80±5.51 48.81±14.17 47.97±10.65 51.43±6.01

glue
mrpc

Accuracy 68.38 31.86±1.54 30.54±0.81 32.60±4.55 44.36±16.72 53.58±20.06 35.64±8.54 45.20±18.49
F1 40.61 26.79±4.62 23.86±0.13 28.24±6.82 34.75±11.75 35.89±10.53 29.79±9.66 35.15±11.24

glue
wnli

Accuracy 56.34 50.99±6.86 55.77±6.55 48.17±5.58 45.35±7.41 44.79±5.93 51.83±6.09 48.17±6.33
F1 36.04 45.10±8.76 50.02±10.19 40.65±9.21 35.99±8.15 32.67±5.76 42.60±8.98 38.89±7.16

super_glue
cb

Accuracy 8.93 21.07±14.58 41.43±6.36 46.79±7.72 54.29±7.32 60.36±11.39 30.00±9.48 49.29±6.51
F1 5.56 16.38±8.88 31.03±7.53 38.23±4.68 41.73±6.07 49.02±9.35 24.48±5.55 31.34±4.18

trec Accuracy 21.20 34.84±8.34 41.20±12.44 43.92±8.89 56.84±6.21 67.44±6.04 42.60±10.79 36.16±5.59
F1 11.85 21.26±6.16 24.85±11.79 31.45±8.37 41.72±6.86 52.98±5.50 25.64±11.94 24.45±3.59

financial
phrasebank

Accuracy 21.85 25.03±2.31 37.62±8.53 42.38±14.95 79.51±5.70 80.22±8.58 33.60±8.01 57.57±9.43
F1 17.50 26.78±8.21 42.88±8.40 47.72±11.33 78.31±4.48 75.72±6.01 41.36±8.81 43.56±10.26

poem
sentiment

Accuracy 21.90 35.81±24.35 20.95±2.61 40.95±40.94 59.05±5.75 61.52±8.45 44.19±7.87 50.67±14.37
F1 22.62 19.25±6.99 18.11±5.99 27.05±14.71 35.84±6.20 35.62±9.43 31.689±8.10 30.87±2.74

medical
questions_pairs

Accuracy 49.51 49.34±1.98 49.34±1.80 48.92±1.05 50.98±1.15 51.93±2.76 51.11±1.62 49.87±0.86
F1 33.11 38.60±5.63 38.64±7.90 42.25±8.02 43.69±6.19 49.06±3.13 41.49±9.38 40.34±7.87

sick Accuracy 56.57 32.97±5.58 45.29±7.67 54.06±2.58 55.88±10.26 65.62±4.18 47.31±14.14 50.34±12.12
F1 24.96 26.14±6.16 33.10±3.44 38.63±6.95 42.19±13.93 49.80±11.15 33.53±13.01 33.95±12.21

hate_speech18 Accuracy 89.49 13.20±3.70 35.13±18.19 38.30±32.00 77.94±23.46 85.01 ±9.90 71.28±21.44 89.49±0.02
F1 47.23 12.59±4.19 27.56±11.32 39.02±15.88 44.49±6.34 47.26±0.21 42.69±6.81 47.22±0.01

ethos
national_origin

Accuracy 21.84 24.37±9.03 29.20±11.57 47.13±23.03 65.97±21.45 78.39±4.70 63.68±16.12 75.17±11.82
F1 22.99 22.43±8.12 27.04±9.59 36.04±13.34 46.07±7.46 49.28±5.04 45.55±3.77 52.17±11.04

ethos
race

Accuracy 26.44 23.68±3.51 27.59±7.13 48.28±17.66 68.74±7.77 78.16±0.00 61.38±14.35 78.39±0.51
F1 242.76 20.61±5.15 25.33±8.50 42.13±15.77 45.29±4.75 43.87±0.00 45.90±1.85 44.93±2.36

ethos
religion

Accuracy 21.84 22.76±3.19 24.60±5.30 37.24±14.93 58.39±22.49 78.62±2.89 31.38±15.41 69.43±18.44
F1 20.57 20.67±4.30 22.89±6.45 35.16±14.76 41.11±7.43 44.00±0.92 44.15±1.38 42.34±3.24

tweet_eval
hate

Accuracy 42.70 43.08±2.59 45.48±4.78 47.40±5.81 49.52±4.42 58.00±3.86 52.36±5.41 52.46±7.38
F1 29.92 35.38±5.73 40.90±7.22 43.30±8.89 43.68±8.22 56.38±5.45 44.70±8.61 50.45±9.29

tweet_eval
stance_atheism

Accuracy 53.85 18.46±1.72 20.38±3.49 22.31±3.99 21.54±4.59 26.15±10.84 18.85±2.51 22.31±4.63
F1 41.50 14.51±2.93 18.27±4.14 20.24±4.52 17.77±3.76 22.40±12.80 16.31±4.66 17.52±6.31

tweet_eval
feminist

Accuracy 49.25 28.06±4.99 31.64±5.11 29.25±6.38 30.78±9.12 38.51±5.42 29.96±4.30 35.22±4.79
F1 34.97 20.79±5.90 24.75±5.94 25.25±4.81 24.78±10.70 24.95±5.83 21.03±5.43 20.70±4.96

Table 4: Full experiment results on GPT-NeoX.

Dataset Metric no demo 0% 25% 50% 75% 100% random label shuffled label

glue
sst2

Accuracy 75.46 49.40±0.50 61.67±11.16 59.43±7.49 75.83±15.67 90.25±3.86 53.58±4.60 64.04±18.00
F1 75.31 33.73±1.04 54.18±16.94 51.56±11.75 72.35±22.11 90.20±3.93 41.69±8.58 55.68±25.16

glue
rte

Accuracy 52.71 44.55±5.04 47.15±3.92 48.95±4.12 52.71±3.88 53.72±5.05 51.05±5.71 53.57±3.10
F1 34/52 38/79±4.09 42.52±6.72 38/34±6.47 48.80±7.75 48.56±8.88 43.63±5.27 48.18±5.01

glue
mrpc

Accuracy 68.38 32.25±2.40 35.98±11.57 43.77±14.81 56.76±14.97 59.71±12.34 43.53±16.03 62.06±6.25
F1 40.61 27.51±5.58 29.10±7.72 35.84±9.65 44.44±7.97 43.60±2.99 36.11±15.93 43.32±3.11

glue
wnli

Accuracy 56.34 48.45±5.42 47.61±3.51 44.23±5.14 46.20±5.40 46.76±4.92 46.48±6.06 49.58±3.21
F1 36.02 43.18±7.24 44.84±5.78 38.22±5.67 37.24±7.06 41.39±7.75 38.21±7.87 43.11±6.10

super_glue
cb

Accuracy 17.86 13.21±5.73 21.07±4.62 40.71±10.37 43.21±12.53 52.86±12.40 20.71±13.87 50.71±8.24
F1 15.21 10.07±4.34 19.22±4.98 27.78±7.81 27.67±7.59 33.86±11.77 16.36±10.01 27.87±8.82

trec Accuracy 21.60 17.92±7.60 30.20±16.30 39.00±15.04 46.88±13.35 49.24±11.47 28.08±5.32 30.44±12.99
F1 15.25 10.35±3.65 21.42±12.56 26.89±13.70 34.39±10.48 36.45±8.04 18.02±4.39 19.99±9.55

financial
phrasebank

Accuracy 29.58 18.28±4.51 23.31±4.51 23.66±8.88 56.16±12.31 70.95±5.84 20.22±4.78 44.81±18.02
F1 34.92 17.32±8.45 17.32±8.45 20.07±9.39 41.98±9.71 55.11±12.43 19.06±8.04 27.07±4.36

poem
sentiment

Accuracy 19.05 28.57±20.96 26.67±19.75 42.48±21.26 48.95±19.76 50.86±16.30 34.86±16.74 47.24±21.24
F1 19.23 17.49±7.04 19.68±8.33 27.39±12.40 26.40±7.73 30.48±7.85 23.50±11.50 30.25±8.53

medical
questions_pairs

Accuracy 49.51 44.92±4.44 47.18±4.62 50.33±2.90 50.03±1.54 50.92±2.20 50.36±0.99 51.11±1.33
F1 33.11 36.08±3.17 39.66±6.01 40.11±8.56 38.63±5.83 42.22±8.49 37.51±4.04 38.17±6.85

sick Accuracy 30.51 43.80±18.43 50.63±7.97 49.41±9.70 49.45±11.58 57.90±14.12 47.96±13.04 42.79±12.61
F1 24.42 22.39±6.24 26.71±2.99 27.90±4.82 34.82±12.47 46.76±19.92 26.31±6.83 29.44±6.83

hate_speech18 Accuracy 89.49 13.96±6.71 27.09±25.05 46.66±31.79 73.83±15.81 80.48±17.85 63.99±18.21 87.69±1.78
F1 47.23 12.75±6.00 20.69±14.78 32.54±15.02 45.91±4.15 47.86±4.91 43.98±7.61 47.12±0.36

ethos
national_origin

Accuracy 25.29 28.05±22.34 35.63±26.32 51.03±19.26 56.09±20.46 68.97±18.90 54.25±25.87 69.89±20.20
F1 25.25 23.49±16.69 28.11±14.46 40.95±14.75 43.90±10.49 45.34±3.12 41.16±14.06 48.08±9.99

ethos
race

Accuracy 32.18 22.07±0.51 43.68±26.06 48.05±19.22 65.75±9.56 78.16±0.00 55.17±21.12 78.16±0.00
F1 31.86 18.25±0.72 34.13±17.43 41.94±14.12 49.77±5.11 43.87±0.00 43.53±11.74 43.87±0.00

ethos
religion

Accuracy 29.89 19.54±1.63 28.97±10.76 30.57±13.74 69.43±13.35 80.00±2.52 51.05±24.01 77.01±3.90
F1 29.74 17.18±1.30 26.89±11.02 28.79±13.64 46.93±3.16 46.52±5.17 37.60±11.80 47.83±3.62

tweet_eval
hate

Accuracy 42.70 44.02±6.56 47.76±5.18 53.08±5.71 55.76±4.35 59.72±2.77 54.74±2.32 54.42±4.48
F1 29.92 40.54±4.18 43.40±3.39 42.43±4.22 48.60±8.50 49.67±9.04 42.19±7.08 46.74±6.60

tweet_eval
stance_atheism

Accuracy 25.00 20.00±2.58 21.92±1.05 22.31±2.19 28.55±10.88 45.38±17.50 20.00±2.58 43.85±16.06
F1 17.82 15.57±5.70 13.37±2.60 14.86±2.85 20.43±11.06 29.66±11.31 13.41±2.69 25.86±6.71

tweet_eval
feminist

Accuracy 49.51 44.92±4.44 47.18±4.62 50.33±2.90 50.03±1.54 50.92±2.20 50.36±0.99 51.11±1.33
F1 33.11 36.08±3.17 39.66±6.01 40.11±8.56 38.63±5.83 42.22±8.49 37.51±4.04 38.17±6.85

Table 5: Full experiment results on GPT-J.
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