@inproceedings{kuila-etal-2020-graph,
title = "A Graph Convolution Network-based System for Technical Domain Identification",
author = "Kuila, Alapan and
Das, Ayan and
Sarkar, Sudeshna",
editor = "Sharma, Dipti Misra and
Ekbal, Asif and
Arora, Karunesh and
Naskar, Sudip Kumar and
Ganguly, Dipankar and
L, Sobha and
Mamidi, Radhika and
Arora, Sunita and
Mishra, Pruthwik and
Mujadia, Vandan",
booktitle = "Proceedings of the 17th International Conference on Natural Language Processing (ICON): TechDOfication 2020 Shared Task",
month = dec,
year = "2020",
address = "Patna, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2020.icon-techdofication.2",
pages = "6--10",
abstract = "This paper presents the IITKGP contribution at the Technical DOmain Identification (TechDOfication) shared task at ICON 2020. In the preprocessing stage, we applied part-of-speech (PoS) taggers and dependency parsers to tag the data. We trained a graph convolution neural network (GCNN) based system that uses the tokens along with their PoS and dependency relations as features to identify the domain of a given document. We participated in the subtasks for coarse-grained domain classification in the English (Subtask 1a), Bengali (Subtask 1b) and Hindi language (Subtask 1d), and, the subtask for fine-grained domain classification task within Computer Science domain in English language (Subtask 2a).",
}
Markdown (Informal)
[A Graph Convolution Network-based System for Technical Domain Identification](https://aclanthology.org/2020.icon-techdofication.2) (Kuila et al., ICON 2020)
ACL