This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation (r=0.9) with human ratings among 11 chatbots. Code and pre-trained models will be public.
Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, while existing dialogue models do not exploit this kind of knowledge effectively enough. In this paper, we propose a novel Transformer-based architecture for multi-turn document grounded conversations. In particular, we devise an Incremental Transformer to encode multi-turn utterances along with knowledge in related documents. Motivated by the human cognitive process, we design a two-pass decoder (Deliberation Decoder) to improve context coherence and knowledge correctness. Our empirical study on a real-world Document Grounded Dataset proves that responses generated by our model significantly outperform competitive baselines on both context coherence and knowledge relevance.
In conversational machine comprehension, it has become one of the research hotspots integrating conversational history information through question reformulation for obtaining better answers. However, the existing question reformulation models are trained only using supervised question labels annotated by annotators without considering any feedback information from answers. In this paper, we propose a novel Answer-Supervised Question Reformulation (ASQR) model for enhancing conversational machine comprehension with reinforcement learning technology. ASQR utilizes a pointer-copy-based question reformulation model as an agent, takes an action to predict the next word, and observes a reward for the whole sentence state after generating the end-of-sequence token. The experimental results on QuAC dataset prove that our ASQR model is more effective in conversational machine comprehension. Moreover, pretraining is essential in reinforcement learning models, so we provide a high-quality annotated dataset for question reformulation by sampling a part of QuAC dataset.