Emotion Recognition in Conversation (ERC) aims to analyze the speaker’s emotional state in a conversation. Fully mining the information in multimodal and historical utterances plays a crucial role in the performance of the model. However, recent works in ERC focus on historical utterances modeling and generally concatenate the multimodal features directly, which neglects mining deep multimodal information and brings redundancy at the same time. To address the shortcomings of existing models, we propose a novel model, termed Enhancing Emotion Recognition in Conversation with Speech and Contextual Prefixes (ESCP). ESCP employs a directed acyclic graph (DAG) to model historical utterances in a conversation and incorporates a contextual prefix containing the sentiment and semantics of historical utterances. By adding speech and contextual prefixes, the inter- and intra-modal emotion information is efficiently modeled using the prior knowledge of the large-scale pre-trained model. Experiments conducted on several public benchmarks demonstrate that the proposed approach achieves state-of-the-art (SOTA) performances. These results affirm the effectiveness of the novel ESCP model and underscore the significance of incorporating speech and contextual prefixes to guide the pre-trained model.
Recent knowledge graph embedding (KGE) models based on hyperbolic geometry have shown great potential in a low-dimensional embedding space. However, the necessity of hyperbolic space in KGE is still questionable, because the calculation based on hyperbolic geometry is much more complicated than Euclidean operations. In this paper, based on the state-of-the-art hyperbolic-based model RotH, we develop two lightweight Euclidean-based models, called RotL and Rot2L. The RotL model simplifies the hyperbolic operations while keeping the flexible normalization effect. Utilizing a novel two-layer stacked transformation and based on RotL, the Rot2L model obtains an improved representation capability, yet costs fewer parameters and calculations than RotH. The experiments on link prediction show that Rot2L achieves the state-of-the-art performance on two widely-used datasets in low-dimensional knowledge graph embeddings. Furthermore, RotL achieves similar performance as RotH but only requires half of the training time.
Sentence Compression (SC), which aims to shorten sentences while retaining important words that express the essential meanings, has been studied for many years in many languages, especially in English. However, improvements on Chinese SC task are still quite few due to several difficulties: scarce of parallel corpora, different segmentation granularity of Chinese sentences, and imperfect performance of syntactic analyses. Furthermore, entire neural Chinese SC models have been under-investigated so far. In this work, we construct an SC dataset of Chinese colloquial sentences from a real-life question answering system in the telecommunication domain, and then, we propose a neural Chinese SC model enhanced with a Self-Organizing Map (SOM-NCSCM), to gain a valuable insight from the data and improve the performance of the whole neural Chinese SC model in a valid manner. Experimental results show that our SOM-NCSCM can significantly benefit from the deep investigation of similarity among data, and achieve a promising F1 score of 89.655 and BLEU4 score of 70.116, which also provides a baseline for further research on Chinese SC task.