Yi Chern Tan


2021

pdf
DART: Open-Domain Structured Data Record to Text Generation
Linyong Nan | Dragomir Radev | Rui Zhang | Amrit Rau | Abhinand Sivaprasad | Chiachun Hsieh | Xiangru Tang | Aadit Vyas | Neha Verma | Pranav Krishna | Yangxiaokang Liu | Nadia Irwanto | Jessica Pan | Faiaz Rahman | Ahmad Zaidi | Mutethia Mutuma | Yasin Tarabar | Ankit Gupta | Tao Yu | Yi Chern Tan | Xi Victoria Lin | Caiming Xiong | Richard Socher | Nazneen Fatema Rajani
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and spoken dialogue systems by utilizing techniques including tree ontology annotation, question-answer pair to declarative sentence conversion, and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github.com/Yale-LILY/dart.

2020

pdf
ESPRIT: Explaining Solutions to Physical Reasoning Tasks
Nazneen Fatema Rajani | Rui Zhang | Yi Chern Tan | Stephan Zheng | Jeremy Weiss | Aadit Vyas | Abhijit Gupta | Caiming Xiong | Richard Socher | Dragomir Radev
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural networks lack the ability to reason about qualitative physics and so cannot generalize to scenarios and tasks unseen during training. We propose ESPRIT, a framework for commonsense reasoning about qualitative physics in natural language that generates interpretable descriptions of physical events. We use a two-step approach of first identifying the pivotal physical events in an environment and then generating natural language descriptions of those events using a data-to-text approach. Our framework learns to generate explanations of how the physical simulation will causally evolve so that an agent or a human can easily reason about a solution using those interpretable descriptions. Human evaluations indicate that ESPRIT produces crucial fine-grained details and has high coverage of physical concepts compared to even human annotations. Dataset, code and documentation are available at https://github.com/salesforce/esprit.

2019

pdf
SParC: Cross-Domain Semantic Parsing in Context
Tao Yu | Rui Zhang | Michihiro Yasunaga | Yi Chern Tan | Xi Victoria Lin | Suyi Li | Heyang Er | Irene Li | Bo Pang | Tao Chen | Emily Ji | Shreya Dixit | David Proctor | Sungrok Shim | Jonathan Kraft | Vincent Zhang | Caiming Xiong | Richard Socher | Dragomir Radev
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.

pdf
CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
Tao Yu | Rui Zhang | Heyang Er | Suyi Li | Eric Xue | Bo Pang | Xi Victoria Lin | Yi Chern Tan | Tianze Shi | Zihan Li | Youxuan Jiang | Michihiro Yasunaga | Sungrok Shim | Tao Chen | Alexander Fabbri | Zifan Li | Luyao Chen | Yuwen Zhang | Shreya Dixit | Vincent Zhang | Caiming Xiong | Richard Socher | Walter Lasecki | Dragomir Radev
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https://yale-lily.github.io/cosql.

pdf
Open Sesame: Getting inside BERT’s Linguistic Knowledge
Yongjie Lin | Yi Chern Tan | Robert Frank
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

How and to what extent does BERT encode syntactically-sensitive hierarchical information or positionally-sensitive linear information? Recent work has shown that contextual representations like BERT perform well on tasks that require sensitivity to linguistic structure. We present here two studies which aim to provide a better understanding of the nature of BERT’s representations. The first of these focuses on the identification of structurally-defined elements using diagnostic classifiers, while the second explores BERT’s representation of subject-verb agreement and anaphor-antecedent dependencies through a quantitative assessment of self-attention vectors. In both cases, we find that BERT encodes positional information about word tokens well on its lower layers, but switches to a hierarchically-oriented encoding on higher layers. We conclude then that BERT’s representations do indeed model linguistically relevant aspects of hierarchical structure, though they do not appear to show the sharp sensitivity to hierarchical structure that is found in human processing of reflexive anaphora.