Chain-of-Thought prompting has improved reasoning capability of large language models (LLM). However, it still is challenging to guarantee the effectiveness and stability for questions requiring complicated reasoning. Recently, Plan-and-Solve prompting enhances the reasoning capability for complex questions by planning the solution steps firstly and then solving them step by step, but it suffers the difficulty to represent and execute the problem-solving logic of complex questions. To deal with these challenges, in this work, we propose a novel Plan-and-Solve prompting method based on Question Decomposition Meaning Representation (QDMR). Specifically, this method first allows the LLM to generate a QDMR graph to represent the problem-solving logic, which is a directed acyclic graph composed of sub-questions. Then, the LLM generates a specific solving process based on the QDMR graph. When solving each sub-question, it can locate the preceding sub-questions and their answers according to the QDMR graph, and then utilize this information for solution. Compared with existing Plan-and-Solve prompting techniques, our method can not only represent the problem-solving logic of complicated questions more accurately with the aid of QDMR graph, but also deliver the dependence information accurately for different solution steps according to the QDMR graph. In addition, with the supervised fine-tuning on the Allen Institute dataset, the decomposing capability of LLM for complicated questions can be considerably enhanced. Extensive experiments show that our method has achieve a great significance in arithmetic reasoning and commonsense reasoning task by comparing the classical Chain-of-Thought prompting and Plan-and-Solve prompting techniques, and the improvements achieved are even greater for problems with more reasoning steps.
Various datasets have been proposed to promote the development of Table Question Answering (TQA) technique. However, the problem setting of existing TQA benchmarks suffers from two limitations. First, they directly provide models with explicit table structures where row headers and column headers of the table are explicitly annotated and treated as model input during inference. Second, they only consider tables of limited types and ignore other tables especially complex tables with flexible header locations. Such simplified problem setting cannot cover practical scenarios where models need to process tables without header annotations in the inference phase or tables of different types. To address above issues, we construct a new TQA dataset with implicit and multi-type table structures, named IM-TQA, which not only requires the model to understand tables without directly available header annotations but also to handle multi-type tables including previously neglected complex tables. We investigate the performance of recent methods on our dataset and find that existing methods struggle in processing implicit and multi-type table structures. Correspondingly, we propose an RGCN-RCI framework outperforming recent baselines. We will release our dataset to facilitate future research.
Learning effective language representations from crowdsourced labels is crucial for many real-world machine learning tasks. A challenging aspect of this problem is that the quality of crowdsourced labels suffer high intra- and inter-observer variability. Since the high-capacity deep neural networks can easily memorize all disagreements among crowdsourced labels, directly applying existing supervised language representation learning algorithms may yield suboptimal solutions. In this paper, we propose
TACMA, a temporal-aware language representation learning heuristic for crowdsourced labels with multiple annotators. The proposed approach (1) explicitly models the intra-observer variability with attention mechanism; (2) computes and aggregates per-sample confidence scores from multiple workers to address the inter-observer disagreements. The proposed heuristic is extremely easy to implement in around 5 lines of code. The proposed heuristic is evaluated on four synthetic and four real-world data sets. The results show that our approach outperforms a wide range of state-of-the-art baselines in terms of prediction accuracy and AUC. To encourage the reproducible results, we make our code publicly available at
https://github.com/CrowdsourcingMining/TACMA.