This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Pre-trained word embeddings, such as GloVe, have shown undesirable gender, racial, and religious biases. To address this problem, we propose DD-GloVe, a train-time debiasing algorithm to learn word embeddings by leveraging ̲dictionary ̲definitions. We introduce dictionary-guided loss functions that encourage word embeddings to be similar to their relatively neutral dictionary definition representations. Existing debiasing algorithms typically need a pre-compiled list of seed words to represent the bias direction, along which biased information gets removed. Producing this list involves subjective decisions and it might be difficult to obtain for some types of biases. We automate the process of finding seed words: our algorithm starts from a single pair of initial seed words and automatically finds more words whose definitions display similar attributes traits. We demonstrate the effectiveness of our approach with benchmark evaluations and empirical analyses. Our code is available at https://github.com/haozhe-an/DD-GloVe.
Although neural table-to-text models have achieved remarkable progress with the help of large-scale datasets, they suffer insufficient learning problem with limited training data. Recently, pre-trained language models show potential in few-shot learning with linguistic knowledge learnt from pretraining on large-scale corpus. However, benefiting table-to-text generation in few-shot setting with the powerful pretrained language model faces three challenges, including (1) the gap between the task’s structured input and the natural language input for pretraining language model. (2) The lack of modeling for table structure and (3) improving text fidelity with less incorrect expressions that are contradicting to the table. To address aforementioned problems, we propose TableGPT for table-to-text generation. At first, we utilize table transformation module with template to rewrite structured table in natural language as input for GPT-2. In addition, we exploit multi-task learning with two auxiliary tasks that preserve table’s structural information by reconstructing the structure from GPT-2’s representation and improving the text’s fidelity with content matching task aligning the table and information in the generated text. By experimenting on Humans, Songs and Books, three few-shot table-to-text datasets in different domains, our model outperforms existing systems on most few-shot settings.
Existing end-to-end task-oriented dialog systems struggle to dynamically model long dialog context for interactions and effectively incorporate knowledge base (KB) information into dialog generation. To conquer these limitations, we propose a Dual Dynamic Memory Network (DDMN) for multi-turn dialog generation, which maintains two core components: dialog memory manager and KB memory manager. The dialog memory manager dynamically expands the dialog memory turn by turn and keeps track of dialog history with an updating mechanism, which encourages the model to filter irrelevant dialog history and memorize important newly coming information. The KB memory manager shares the structural KB triples throughout the whole conversation, and dynamically extracts KB information with a memory pointer at each turn. Experimental results on three benchmark datasets demonstrate that DDMN significantly outperforms the strong baselines in terms of both automatic evaluation and human evaluation. Our code is available at https://github.com/siat-nlp/DDMN.
Neural conversation models are known to generate appropriate but non-informative responses in general. A scenario where informativeness can be significantly enhanced is Conversing by Reading (CbR), where conversations take place with respect to a given external document. In previous work, the external document is utilized by (1) creating a context-aware document memory that integrates information from the document and the conversational context, and then (2) generating responses referring to the memory. In this paper, we propose to create the document memory with some anticipated responses in mind. This is achieved using a teacher-student framework. The teacher is given the external document, the context, and the ground-truth response, and learns how to build a response-aware document memory from three sources of information. The student learns to construct a response-anticipated document memory from the first two sources, and teacher’s insight on memory creation. Empirical results show that our model outperforms the previous state-of-the-art for the CbR task.
Neural text generation has made tremendous progress in various tasks. One common characteristic of most of the tasks is that the texts are not restricted to some rigid formats when generating. However, we may confront some special text paradigms such as Lyrics (assume the music score is given), Sonnet, SongCi (classical Chinese poetry of the Song dynasty), etc. The typical characteristics of these texts are in three folds: (1) They must comply fully with the rigid predefined formats. (2) They must obey some rhyming schemes. (3) Although they are restricted to some formats, the sentence integrity must be guaranteed. To the best of our knowledge, text generation based on the predefined rigid formats has not been well investigated. Therefore, we propose a simple and elegant framework named SongNet to tackle this problem. The backbone of the framework is a Transformer-based auto-regressive language model. Sets of symbols are tailor-designed to improve the modeling performance especially on format, rhyme, and sentence integrity. We improve the attention mechanism to impel the model to capture some future information on the format. A pre-training and fine-tuning framework is designed to further improve the generation quality. Extensive experiments conducted on two collected corpora demonstrate that our proposed framework generates significantly better results in terms of both automatic metrics and the human evaluation.
Variational Autoencoder (VAE) is widely used as a generative model to approximate a model’s posterior on latent variables by combining the amortized variational inference and deep neural networks. However, when paired with strong autoregressive decoders, VAE often converges to a degenerated local optimum known as “posterior collapse”. Previous approaches consider the Kullback–Leibler divergence (KL) individual for each datapoint. We propose to let the KL follow a distribution across the whole dataset, and analyze that it is sufficient to prevent posterior collapse by keeping the expectation of the KL’s distribution positive. Then we propose Batch Normalized-VAE (BN-VAE), a simple but effective approach to set a lower bound of the expectation by regularizing the distribution of the approximate posterior’s parameters. Without introducing any new model component or modifying the objective, our approach can avoid the posterior collapse effectively and efficiently. We further show that the proposed BN-VAE can be extended to conditional VAE (CVAE). Empirically, our approach surpasses strong autoregressive baselines on language modeling, text classification and dialogue generation, and rivals more complex approaches while keeping almost the same training time as VAE.
Maintaining a consistent personality in conversations is quite natural for human beings, but is still a non-trivial task for machines. The persona-based dialogue generation task is thus introduced to tackle the personality-inconsistent problem by incorporating explicit persona text into dialogue generation models. Despite the success of existing persona-based models on generating human-like responses, their one-stage decoding framework can hardly avoid the generation of inconsistent persona words. In this work, we introduce a three-stage framework that employs a generate-delete-rewrite mechanism to delete inconsistent words from a generated response prototype and further rewrite it to a personality-consistent one. We carry out evaluations by both human and automatic metrics. Experiments on the Persona-Chat dataset show that our approach achieves good performance.
Sentence function is an important linguistic feature indicating the communicative purpose in uttering a sentence. Incorporating sentence functions into conversations has shown improvements in the quality of generated responses. However, the number of utterances for different types of fine-grained sentence functions is extremely imbalanced. Besides a small number of high-resource sentence functions, a large portion of sentence functions is infrequent. Consequently, dialogue generation conditioned on these infrequent sentence functions suffers from data deficiency. In this paper, we investigate a structured meta-learning (SML) approach for dialogue generation on infrequent sentence functions. We treat dialogue generation conditioned on different sentence functions as separate tasks, and apply model-agnostic meta-learning to high-resource sentence functions data. Furthermore, SML enhances meta-learning effectiveness by promoting knowledge customization among different sentence functions but simultaneously preserving knowledge generalization for similar sentence functions. Experimental results demonstrate that SML not only improves the informativeness and relevance of generated responses, but also can generate responses consistent with the target sentence functions. Code will be public to facilitate the research along this line.
Neural table-to-text models, which select and order salient data, as well as verbalizing them fluently via surface realization, have achieved promising progress. Based on results from previous work, the performance bottleneck of current models lies in the stage of content planing (selecting and ordering salient content from the input). That is, performance drops drastically when an oracle content plan is replaced by a model-inferred one during surface realization. In this paper, we propose to enhance neural content planning by (1) understanding data values with contextual numerical value representations that bring the sense of value comparison into content planning; (2) verifying the importance and ordering of the selected sequence of records with policy gradient. We evaluated our model on ROTOWIRE and MLB, two datasets on this task, and results show that our model outperforms existing systems with respect to content planning metrics.
Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts. Previous methods for EE typically model it as a classification task, which are usually prone to the data scarcity problem. In this paper, we propose a new learning paradigm of EE, by explicitly casting it as a machine reading comprehension problem (MRC). Our approach includes an unsupervised question generation process, which can transfer event schema into a set of natural questions, followed by a BERT-based question-answering process to retrieve answers as EE results. This learning paradigm enables us to strengthen the reasoning process of EE, by introducing sophisticated models in MRC, and relieve the data scarcity problem, by introducing the large-scale datasets in MRC. The empirical results show that: i) our approach attains state-of-the-art performance by considerable margins over previous methods. ii) Our model is excelled in the data-scarce scenario, for example, obtaining 49.8% in F1 for event argument extraction with only 1% data, compared with 2.2% of the previous method. iii) Our model also fits with zero-shot scenarios, achieving 37.0% and 16% in F1 on two datasets without using any EE training data.
Maintaining a consistent attribute profile is crucial for dialogue agents to naturally converse with humans. Existing studies on improving attribute consistency mainly explored how to incorporate attribute information in the responses, but few efforts have been made to identify the consistency relations between response and attribute profile. To facilitate the study of profile consistency identification, we create a large-scale human-annotated dataset with over 110K single-turn conversations and their key-value attribute profiles. Explicit relation between response and profile is manually labeled. We also propose a key-value structure information enriched BERT model to identify the profile consistency, and it gained improvements over strong baselines. Further evaluations on downstream tasks demonstrate that the profile consistency identification model is conducive for improving dialogue consistency.
Response selection plays a vital role in building retrieval-based conversation systems. Despite that response selection is naturally a learning-to-rank problem, most prior works take a point-wise view and train binary classifiers for this task: each response candidate is labeled either relevant (one) or irrelevant (zero). On the one hand, this formalization can be sub-optimal due to its ignorance of the diversity of response quality. On the other hand, annotating grayscale data for learning-to-rank can be prohibitively expensive and challenging. In this work, we show that grayscale data can be automatically constructed without human effort. Our method employs off-the-shelf response retrieval models and response generation models as automatic grayscale data generators. With the constructed grayscale data, we propose multi-level ranking objectives for training, which can (1) teach a matching model to capture more fine-grained context-response relevance difference and (2) reduce the train-test discrepancy in terms of distractor strength. Our method is simple, effective, and universal. Experiments on three benchmark datasets and four state-of-the-art matching models show that the proposed approach brings significant and consistent performance improvements.
Sentence function is an important linguistic feature referring to a user’s purpose in uttering a specific sentence. The use of sentence function has shown promising results to improve the performance of conversation models. However, there is no large conversation dataset annotated with sentence functions. In this work, we collect a new Short-Text Conversation dataset with manually annotated SEntence FUNctions (STC-Sefun). Classification models are trained on this dataset to (i) recognize the sentence function of new data in a large corpus of short-text conversations; (ii) estimate a proper sentence function of the response given a test query. We later train conversation models conditioned on the sentence functions, including information retrieval-based and neural generative models. Experimental results demonstrate that the use of sentence functions can help improve the quality of the returned responses.
Traditional generative dialogue models generate responses solely from input queries. Such information is insufficient for generating a specific response since a certain query could be answered in multiple ways. Recently, researchers have attempted to fill the information gap by exploiting information retrieval techniques. For a given query, similar dialogues are retrieved from the entire training data and considered as an additional knowledge source. While the use of retrieval may harvest extensive information, the generative models could be overwhelmed, leading to unsatisfactory performance. In this paper, we propose a new framework which exploits retrieval results via a skeleton-to-response paradigm. At first, a skeleton is extracted from the retrieved dialogues. Then, both the generated skeleton and the original query are used for response generation via a novel response generator. Experimental results show that our approach significantly improves the informativeness of the generated responses
In multi-turn dialogue, utterances do not always take the full form of sentences. These incomplete utterances will greatly reduce the performance of open-domain dialogue systems. Restoring more incomplete utterances from context could potentially help the systems generate more relevant responses. To facilitate the study of incomplete utterance restoration for open-domain dialogue systems, a large-scale multi-turn dataset Restoration-200K is collected and manually labeled with the explicit relation between an utterance and its context. We also propose a “pick-and-combine” model to restore the incomplete utterance from its context. Experimental results demonstrate that the annotated dataset and the proposed approach significantly boost the response quality of both single-turn and multi-turn dialogue systems.
End-to-end sequence generation is a popular technique for developing open domain dialogue systems, though they suffer from the safe response problem. Researchers have attempted to tackle this problem by incorporating generative models with the returns of retrieval systems. Recently, a skeleton-then-response framework has been shown promising results for this task. Nevertheless, how to precisely extract a skeleton and how to effectively train a retrieval-guided response generator are still challenging. This paper presents a novel framework in which the skeleton extraction is made by an interpretable matching model and the following skeleton-guided response generation is accomplished by a separately trained generator. Extensive experiments demonstrate the effectiveness of our model designs.
Neural conversation models such as encoder-decoder models are easy to generate bland and generic responses. Some researchers propose to use the conditional variational autoencoder (CVAE) which maximizes the lower bound on the conditional log-likelihood on a continuous latent variable. With different sampled latent variables, the model is expected to generate diverse responses. Although the CVAE-based models have shown tremendous potential, their improvement of generating high-quality responses is still unsatisfactory. In this paper, we introduce a discrete latent variable with an explicit semantic meaning to improve the CVAE on short-text conversation. A major advantage of our model is that we can exploit the semantic distance between the latent variables to maintain good diversity between the sampled latent variables. Accordingly, we propose a two-stage sampling approach to enable efficient diverse variable selection from a large latent space assumed in the short-text conversation task. Experimental results indicate that our model outperforms various kinds of generation models under both automatic and human evaluations and generates more diverse and informative responses.
Comments of online articles provide extended views and improve user engagement. Automatically making comments thus become a valuable functionality for online forums, intelligent chatbots, etc. This paper proposes the new task of automatic article commenting, and introduces a large-scale Chinese dataset with millions of real comments and a human-annotated subset characterizing the comments’ varying quality. Incorporating the human bias of comment quality, we further develop automatic metrics that generalize a broad set of popular reference-based metrics and exhibit greatly improved correlations with human evaluations.
Sequence-to-sequence (SEQ2SEQ) models have been successfully applied to automatic math word problem solving. Despite its simplicity, a drawback still remains: a math word problem can be correctly solved by more than one equations. This non-deterministic transduction harms the performance of maximum likelihood estimation. In this paper, by considering the uniqueness of expression tree, we propose an equation normalization method to normalize the duplicated equations. Moreover, we analyze the performance of three popular SEQ2SEQ models on the math word problem solving. We find that each model has its own specialty in solving problems, consequently an ensemble model is then proposed to combine their advantages. Experiments on dataset Math23K show that the ensemble model with equation normalization significantly outperforms the previous state-of-the-art methods.
Sequence-to-sequence neural generation models have achieved promising performance on short text conversation tasks. However, they tend to generate generic/dull responses, leading to unsatisfying dialogue experience. We observe that in the conversation tasks, each query could have multiple responses, which forms a 1-to-n or m-to-n relationship in the view of the total corpus. The objective function used in standard sequence-to-sequence models will be dominated by loss terms with generic patterns. Inspired by this observation, we introduce a statistical re-weighting method that assigns different weights for the multiple responses of the same query, and trains the common neural generation model with the weights. Experimental results on a large Chinese dialogue corpus show that our method improves the acceptance rate of generated responses compared with several baseline models and significantly reduces the number of generated generic responses.
This paper presents a deep neural solver to automatically solve math word problems. In contrast to previous statistical learning approaches, we directly translate math word problems to equation templates using a recurrent neural network (RNN) model, without sophisticated feature engineering. We further design a hybrid model that combines the RNN model and a similarity-based retrieval model to achieve additional performance improvement. Experiments conducted on a large dataset show that the RNN model and the hybrid model significantly outperform state-of-the-art statistical learning methods for math word problem solving.