2024
pdf
abs
Plum: Prompt Learning using Metaheuristics
Rui Pan
|
Shuo Xing
|
Shizhe Diao
|
Wenhe Sun
|
Xiang Liu
|
KaShun Shum
|
Jipeng Zhang
|
Renjie Pi
|
Tong Zhang
Findings of the Association for Computational Linguistics ACL 2024
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly “general”, i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization.
pdf
abs
Active Prompting with Chain-of-Thought for Large Language Models
Shizhe Diao
|
Pengcheng Wang
|
Yong Lin
|
Rui Pan
|
Xiang Liu
|
Tong Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs’ ability to produce high-quality answers. In particular, an effective approach for complex question-and-answering tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving superior performance on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationships demonstrate the effectiveness of our method.
pdf
abs
MAPO: Advancing Multilingual Reasoning through Multilingual-Alignment-as-Preference Optimization
Shuaijie She
|
Wei Zou
|
Shujian Huang
|
Wenhao Zhu
|
Xiang Liu
|
Xiang Geng
|
Jiajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Intuitively, reasoning abilities are considered language-agnostic. However, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO) to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization(DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages. The project is available at https://github.com/NJUNLP/MAPO.
2021
pdf
abs
基于小句复合体的中文机器阅读理解研究(Machine Reading Comprehension Based on Clause Complex)
Ruiqi Wang (王瑞琦)
|
Zhiyong Luo (罗智勇)
|
Xiang Liu (刘祥)
|
Rui Han (韩瑞昉)
|
Shuxin Li (李舒馨)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
机器阅读理解任务要求机器根据篇章文本回答相关问题。本文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。本文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句复合体中跨标点句话头札话体共享关系,来化简机器阅读理解任务的难度;并设计与实现了基于小句复合体的机器阅读理解模型。实验结果表明:在问题线索要素与答案跨越多个标点句时,答案抽取的精确匹配率(EM)相对于基准模型提升了3.49%,模型整体的精确匹配率提升了3.26%。