2024
pdf
abs
Optimal Transport Guided Correlation Assignment for Multimodal Entity Linking
Zefeng Zhang
|
Jiawei Sheng
|
Zhang Chuang
|
Liangyunzhi Liangyunzhi
|
Wenyuan Zhang
|
Siqi Wang
|
Tingwen Liu
Findings of the Association for Computational Linguistics ACL 2024
Multimodal entity linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.
2023
pdf
abs
Learning to Correct Noisy Labels for Fine-Grained Entity Typing via Co-Prediction Prompt Tuning
Minghao Tang
|
Yongquan He
|
Yongxiu Xu
|
Hongbo Xu
|
Wenyuan Zhang
|
Yang Lin
Findings of the Association for Computational Linguistics: EMNLP 2023
Fine-grained entity typing (FET) is an essential task in natural language processing that aims to assign semantic types to entities in text. However, FET poses a major challenge known as the noise labeling problem, whereby current methods rely on estimating noise distribution to identify noisy labels but are confused by diverse noise distribution deviation. To address this limitation, we introduce Co-Prediction Prompt Tuning for noise correction in FET, which leverages multiple prediction results to identify and correct noisy labels. Specifically, we integrate prediction results to recall labeled labels and utilize a differentiated margin to identify inaccurate labels. Moreover, we design an optimization objective concerning divergent co-predictions during fine-tuning, ensuring that the model captures sufficient information and maintains robustness in noise identification. Experimental results on three widely-used FET datasets demonstrate that our noise correction approach significantly enhances the quality of various types of training samples, including those annotated using distant supervision, ChatGPT, and crowdsourcing.
pdf
abs
A Boundary Offset Prediction Network for Named Entity Recognition
Minghao Tang
|
Yongquan He
|
Yongxiu Xu
|
Hongbo Xu
|
Wenyuan Zhang
|
Yang Lin
Findings of the Association for Computational Linguistics: EMNLP 2023
Named entity recognition (NER) is a fundamental task in natural language processing that aims to identify and classify named entities in text. However, span-based methods for NER typically assign entity types to text spans, resulting in an imbalanced sample space and neglecting the connections between non-entity and entity spans. To address these issues, we propose a novel approach for NER, named the Boundary Offset Prediction Network (BOPN), which predicts the boundary offsets between candidate spans and their nearest entity spans. By leveraging the guiding semantics of boundary offsets, BOPN establishes connections between non-entity and entity spans, enabling non-entity spans to function as additional positive samples for entity detection. Furthermore, our method integrates entity type and span representations to generate type-aware boundary offsets instead of using entity types as detection targets. We conduct experiments on eight widely-used NER datasets, and the results demonstrate that our proposed BOPN outperforms previous state-of-the-art methods.
pdf
bib
abs
CCL23-Eval 任务1系统报告:基于信息论约束及篇章信息的古籍命名实体识别(System Report for CCL23-Eval Task 1: Information Theory Constraint and Paragraph based Paragraph Classical Named Entity Recognition)
Xinghua Zhang (张兴华)
|
Tianjun Liu (刘天昀)
|
Wenyuan Zhang (张文源)
|
Tingwen Liu (柳厅文)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
“命名实体识别旨在自动识别出文本中具有特定意义的实体(例如,人名、地名),古籍文献中的命名实体识别通过识别人名、书籍、官职等实体,为深度挖掘、组织古汉语人文知识提供重要支撑。现有的中文命名实体识别方法主要聚焦在现代文,但古籍中的实体识别具有更大的挑战,表现在实体的歧义性和边界模糊性两方面。由于古籍行文简练,单字表达加剧了实体的歧义性问题,句读及分词断句难度的提升使实体边界的识别更具挑战性。为有效处理上述问题,本文提出一种基于信息论及篇章信息的古籍命名实体识别方法。通过检索古籍文本的来源信息融入篇章先验知识,并在同一篇章的古籍文本上采取滑动窗口采样增强,以引入篇章背景信息,有效缓解实体歧义性问题。此外,在信息论视角下,约束实体的上下文信息及实体本身特征的编码,最大程度保留泛化特征,去除冗余信息,缓解实体边界模糊的问题,在词义复杂多样、句读困难的古文典籍中提升命名实体识别性能。最终,在token-wise和span-level感知的命名实体识别基础框架下,本文的方法取得了最优的评测性能。”