Weizhu Chen


2024

pdf
AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models
Wanjun Zhong | Ruixiang Cui | Yiduo Guo | Yaobo Liang | Shuai Lu | Yanlin Wang | Amin Saied | Weizhu Chen | Nan Duan
Findings of the Association for Computational Linguistics: NAACL 2024

Assessing foundation models’ abilities for human-level tasks is crucial for Artificial General Intelligence (AGI) development.Traditional benchmarks, which rely on artificial datasets, may not accurately represent these capabilities. In this paper, we introduce AGIEval, a novel bilingual benchmark designed to assess foundation models in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models on our benchmark. Impressively, we show that GPT-4 exceeds the average human performance in SAT, LSAT, and math contests, with 95% accuracy on SAT Math and 92.5% on the Chinese college entrance English exam. This demonstrates the exceptional performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks requiring complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal their strengths and limitations, providing valuable insights into future directions for enhancing general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a meaningful and robust evaluation of foundation models’ performance in real-world scenarios.

pdf
Language Models can be Deductive Solvers
Jiazhan Feng | Ruochen Xu | Junheng Hao | Hiteshi Sharma | Yelong Shen | Dongyan Zhao | Weizhu Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of external logical solvers and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly internalizes and emulates the reasoning processes of logical solvers and avoids parsing errors by learning strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning benchmarks show that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like GPT-4. This project is available in https://github.com/Cyril-JZ/LoGiPT.

pdf
Competition-Level Problems are Effective LLM Evaluators
Yiming Huang | Zhenghao Lin | Xiao Liu | Yeyun Gong | Shuai Lu | Fangyu Lei | Yaobo Liang | Yelong Shen | Chen Lin | Nan Duan | Weizhu Chen
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4’s perceived zero-shot performance on this task, considering various aspects such as problems’ release time, difficulties, and types of errors encountered. Surprisingly, the perceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification. Unfortunately, none of them is able to consistently mitigate the challenges. Through our work, we emphasize the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.

pdf
AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators
Xingwei He | Zhenghao Lin | Yeyun Gong | A-Long Jin | Hang Zhang | Chen Lin | Jian Jiao | Siu Ming Yiu | Nan Duan | Weizhu Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Many natural language processing (NLP) tasks rely on labeled data to train machine learning models with high performance. However, data annotation is time-consuming and expensive, especially when the task involves a large amount of data or requires specialized domains. Recently, GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks. In this paper, we first claim that large language models (LLMs), such as GPT-3.5, can serve as an excellent crowdsourced annotator when provided with sufficient guidance and demonstrated examples. Accordingly, we propose AnnoLLM, an annotation system powered by LLMs, which adopts a two-step approach, explain-then-annotate. Concretely, we first prompt LLMs to provide explanations for why the specific ground truth answer/label was assigned for a given example. Then, we construct the few-shot chain-of-thought prompt with the self-generated explanation and employ it to annotate the unlabeled data with LLMs. Our experiment results on three tasks, including user input and keyword relevance assessment, BoolQ, and WiC, demonstrate that AnnoLLM surpasses or performs on par with crowdsourced annotators. Furthermore, we build the first conversation-based information retrieval dataset employing AnnoLLM. This dataset is designed to facilitate the development of retrieval models capable of retrieving pertinent documents for conversational text. Human evaluation has validated the dataset’s high quality.

2023

pdf
Making Language Models Better Reasoners with Step-Aware Verifier
Yifei Li | Zeqi Lin | Shizhuo Zhang | Qiang Fu | Bei Chen | Jian-Guang Lou | Weizhu Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Few-shot learning is a challenging task that requires language models to generalize from limited examples. Large language models like GPT-3 and PaLM have made impressive progress in this area, but they still face difficulties in reasoning tasks such as GSM8K, a benchmark for arithmetic problems. To improve their reasoning skills, previous work has proposed to guide the language model with prompts that elicit a series of reasoning steps before giving the final answer, achieving a significant improvement on GSM8K from 17.9% to 58.1% in problem-solving rate. In this paper, we present DiVeRSe (Diverse Verifier on Reasoning Step), a novel approach that further enhances the reasoning capability of language models. DiVeRSe has three main components: first, it generates diverse prompts to explore different reasoning paths for the same question; second, it uses a verifier to filter out incorrect answers based on a weighted voting scheme; and third, it verifies each reasoning step individually instead of the whole chain. We evaluate DiVeRSe on the latest language model code-davinci-002 and show that it achieves new state-of-the-art results on six of eight reasoning benchmarks (e.g., GSM8K 74.4% to 83.2%).

pdf
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
Xuxi Chen | Tianlong Chen | Weizhu Chen | Ahmed Hassan Awadallah | Zhangyang Wang | Yu Cheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Gigantic pre-trained models have become central to natural language processing (NLP), serving as the starting point for fine-tuning towards a range of downstream tasks. However, two pain points persist for this paradigm: (a) as the pre-trained models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning process can be time-consuming and computationally expensive; (b) the fine-tuned model has the same size as its starting point by default, which is neither sensible due to its more specialized functionality, nor practical since many fine-tuned models will be deployed in resource-constrained environments. To address these pain points, we propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights. Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning - by enforcing sparsity-aware low-rank updates on top of the pre-trained weights; and (ii) resource-efficient inference - by encouraging a sparse weight structure towards the final fine-tuned model. We leverage sparsity in these two directions by exploiting both unstructured and structured sparse patterns in pre-trained language models viaa unified approach. Extensive experiments and in-depth investigations, with diverse network backbones (i.e., BERT, RoBERTa, and GPT-2) on dozens of datasets, consistently demonstrate impressive parameter-/inference-efficiency, while maintaining competitive downstream performance. For instance, DSEE saves about 25% inference FLOPs while achieving comparable performance, with 0.5% trainable parameters on BERT. Codes are available at https://github.com/VITA-Group/DSEE.

pdf
Code Execution with Pre-trained Language Models
Chenxiao Liu | Shuai Lu | Weizhu Chen | Daxin Jiang | Alexey Svyatkovskiy | Shengyu Fu | Neel Sundaresan | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2023

Code execution is a fundamental aspect of programming language semantics that reflects the exact behavior of the code. However, most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures. In this paper, we investigate how well pre-trained models can understand and perform code execution. We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution, which challenges existing models such as Codex. We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension. We evaluate CodeExecutor on code execution and show its promising performance and limitations. We also demonstrate its potential benefits for code intelligence tasks such as zero-shot code-to-code search and text-to-code generation. Our analysis provides insights into the learning and generalization abilities of pre-trained models for code execution.

pdf
Joint Generator-Ranker Learning for Natural Language Generation
Weizhou Shen | Yeyun Gong | Yelong Shen | Song Wang | Xiaojun Quan | Nan Duan | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL 2023

Generate-then-rank is a widely used mechanism for text generation, where a generator produces multiple text candidates and a ranker chooses the best one among the text candidates. However, existing methods usually train the generator and the ranker individually, neglecting the mutual feedback that could further enhance the generation quality. To tackle this limitation, we propose JGR, a novel joint training algorithm that integrates the generator and the ranker in a single framework. JGR optimizes the generator with a hybrid objective that combines data likelihood and ranker reward, and trains the ranker with a contrastive loss that compares the generator outputs. By iteratively updating the generator and the ranker, JGR can effectively harmonize their learning and enhance their quality jointly. We evaluate JGR on various text generation tasks and demonstrate that it surpasses existing methods on four public datasets across three common generation scenarios. Our code and models are publicly available at https://github.com/microsoft/ProphetNet/tree/master/JGR.

pdf
Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy
Zhihong Shao | Yeyun Gong | Yelong Shen | Minlie Huang | Nan Duan | Weizhu Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Retrieval-augmented generation has raise extensive attention as it is promising to address the limitations of large language models including outdated knowledge and hallucinations. However, retrievers struggle to capture relevance, especially for queries with complex information needs. Recent work has proposed to improve relevance modeling by having large language models actively involved in retrieval, i.e., to guide retrieval with generation. In this paper, we show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner: a model’s response to a task input shows what might be needed to finish the task, and thus can serve as an informative context for retrieving more relevant knowledge which in turn helps generate a better response in another iteration. Compared with recent work which interleaves retrieval with generation when completing a single output, Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints. We evaluate Iter-RetGen on multi-hop question answering, fact verification, and commonsense reasoning, and show that it can flexibly leverage parametric knowledge and non-parametric knowledge, and is superior to or competitive with state-of-the-art retrieval-augmented baselines while causing fewer overheads of retrieval and generation. We can further improve performance via generation-augmented retrieval adaptation.

pdf
RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation
Fengji Zhang | Bei Chen | Yue Zhang | Jacky Keung | Jin Liu | Daoguang Zan | Yi Mao | Jian-Guang Lou | Weizhu Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The task of repository-level code completion is to continue writing the unfinished code based on a broader context of the repository. While for automated code completion tools, it is difficult to utilize the useful information scattered in different files. We propose RepoCoder, a simple, generic, and effective framework to address the challenge. It streamlines the repository-level code completion process by incorporating a similarity-based retriever and a pre-trained code language model in an iterative retrieval-generation pipeline. RepoCoder makes effective utilization of repository-level information for code completion and has the ability to generate code at various levels of granularity. Moreover, we propose a new benchmark RepoBench, which consists of the latest and high-quality real-world repositories covering line, API invocation, and function body completion scenarios. Experimental results indicate that RepoCoder significantly improves the In-File completion baseline by over 10% in all settings and consistently outperforms the vanilla retrieval-augmented code completion approach. Furthermore, we validate the effectiveness of RepoCoder through comprehensive analysis, providing valuable insights for future research. Our source code and benchmark will be publicly available after the paper review.

pdf
Skill-Based Few-Shot Selection for In-Context Learning
Shengnan An | Bo Zhou | Zeqi Lin | Qiang Fu | Bei Chen | Nanning Zheng | Weizhu Chen | Jian-Guang Lou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

*In-context learning* is the paradigm that adapts large language models to downstream tasks by providing a few examples. *Few-shot selection*—selecting appropriate examples for each test instance separately—is important for in-context learning. In this paper, we propose **Skill-KNN**, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based descriptions for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.

2022

pdf
OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering
Zhengbao Jiang | Yi Mao | Pengcheng He | Graham Neubig | Weizhu Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The information in tables can be an important complement to text, making table-based question answering (QA) systems of great value. The intrinsic complexity of handling tables often adds an extra burden to both model design and data annotation. In this paper, we aim to develop a simple table-based QA model with minimal annotation effort. Motivated by the fact that table-based QA requires both alignment between questions and tables and the ability to perform complicated reasoning over multiple table elements, we propose an omnivorous pretraining approach that consumes both natural and synthetic data to endow models with these respective abilities. Specifically, given freely available tables, we leverage retrieval to pair them with relevant natural sentences for mask-based pretraining, and synthesize NL questions by converting SQL sampled from tables for pretraining with a QA loss. We perform extensive experiments in both few-shot and full settings, and the results clearly demonstrate the superiority of our model OmniTab, with the best multitasking approach achieving an absolute gain of 16.2% and 2.7% in 128-shot and full settings respectively, also establishing a new state-of-the-art on WikiTableQuestions. Detailed ablations and analyses reveal different characteristics of natural and synthetic data, shedding light on future directions in omnivorous pretraining.

pdf
MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation
Simiao Zuo | Qingru Zhang | Chen Liang | Pengcheng He | Tuo Zhao | Weizhu Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained language models have demonstrated superior performance in various natural language processing tasks. However, these models usually contain hundreds of millions of parameters, which limits their practicality because of latency requirements in real-world applications. Existing methods train small compressed models via knowledge distillation. However, performance of these small models drops significantly compared with the pre-trained models due to their reduced model capacity. We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed. We initialize MoEBERT by adapting the feed-forward neural networks in a pre-trained model into multiple experts. As such, representation power of the pre-trained model is largely retained. During inference, only one of the experts is activated, such that speed can be improved. We also propose a layer-wise distillation method to train MoEBERT. We validate the efficiency and efficacy of MoEBERT on natural language understanding and question answering tasks. Results show that the proposed method outperforms existing task-specific distillation algorithms. For example, our method outperforms previous approaches by over 2% on the MNLI (mismatched) dataset. Our code is publicly available at https://github.com/SimiaoZuo/MoEBERT.

pdf
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
Woojeong Jin | Yu Cheng | Yelong Shen | Weizhu Chen | Xiang Ren
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large pre-trained vision-language (VL) models can learn a new task with a handful of examples and generalize to a new task without fine-tuning. However, these VL models are hard to deploy for real-world applications due to their impractically huge sizes and slow inference speed. To solve this limitation, we study prompt-based low-resource learning of VL tasks with our proposed method, FewVLM, relatively smaller than recent few-shot learners. For FewVLM, we pre-train a sequence-to-sequence transformer model with prefix language modeling (PrefixLM) and masked language modeling (MaskedLM).Furthermore, we analyze the effect of diverse prompts for few-shot tasks. Experimental results on VQA show that FewVLM with prompt-based learning outperforms Frozen which is 31x larger than FewVLM by 18.2% point and achieves comparable results to a 246x larger model, PICa.In our analysis, we observe that (1) prompts significantly affect zero-shot performance but marginally affect few-shot performance, (2) models with noisy prompts learn as quickly as hand-crafted prompts given larger training data, and (3) MaskedLM helps VQA tasks while PrefixLM boosts captioning performance. Our code is publicly available at https://github.com/woojeongjin/FewVLM

pdf
DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for Dialog Response Generation
Wei Chen | Yeyun Gong | Song Wang | Bolun Yao | Weizhen Qi | Zhongyu Wei | Xiaowu Hu | Bartuer Zhou | Yi Mao | Weizhu Chen | Biao Cheng | Nan Duan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialog response generation in open domain is an important research topic where the main challenge is to generate relevant and diverse responses. In this paper, we propose a new dialog pre-training framework called DialogVED, which introduces continuous latent variables into the enhanced encoder-decoder pre-training framework to increase the relevance and diversity of responses. With the help of a large dialog corpus (Reddit), we pre-train the model using the following 4 tasks, used in training language models (LMs) and Variational Autoencoders (VAEs) literature: 1) masked language model; 2) response generation; 3) bag-of-words prediction; and 4) KL divergence reduction. We also add additional parameters to model the turn structure in dialogs to improve the performance of the pre-trained model. We conduct experiments on PersonaChat, DailyDialog, and DSTC7-AVSD benchmarks for response generation. Experimental results show that our model achieves the new state-of-the-art results on all these datasets.

pdf
A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation
Tianyu Liu | Yizhe Zhang | Chris Brockett | Yi Mao | Zhifang Sui | Weizhu Chen | Bill Dolan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large pretrained generative models like GPT-3 often suffer from hallucinating non-existent or incorrect content, which undermines their potential merits in real applications. Existing work usually attempts to detect these hallucinations based on a corresponding oracle reference at a sentence or document level. However ground-truth references may not be readily available for many free-form text generation applications, and sentence- or document-level detection may fail to provide the fine-grained signals that would prevent fallacious content in real time. As a first step to addressing these issues, we propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDeS (HAllucination DEtection dataSet). To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations. To mitigate label imbalance during annotation, we utilize an iterative model-in-loop strategy. We conduct comprehensive data analyses and create multiple baseline models.

pdf
CAMERO: Consistency Regularized Ensemble of Perturbed Language Models with Weight Sharing
Chen Liang | Pengcheng He | Yelong Shen | Weizhu Chen | Tuo Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Model ensemble is a popular approach to produce a low-variance and well-generalized model. However, it induces large memory and inference costs, which is often not affordable for real-world deployment. Existing work has resorted to sharing weights among models. However, when increasing the proportion of the shared weights, the resulting models tend to be similar, and the benefits of using model ensemble diminish. To retain ensemble benefits while maintaining a low memory cost, we propose a consistency-regularized ensemble learning approach based on perturbed models, named CAMERO. Specifically, we share the weights of bottom layers across all models and apply different perturbations to the hidden representations for different models, which can effectively promote the model diversity. Meanwhile, we apply a prediction consistency regularizer across the perturbed models to control the variance due to the model diversity. Our experiments using large language models demonstrate that CAMERO significantly improves the generalization performance of the ensemble model. Specifically, CAMERO outperforms the standard ensemble of 8 BERT-base models on the GLUE benchmark by 0.7 with a significantly smaller model size (114.2M vs. 880.6M).

pdf
Reasoning Like Program Executors
Xinyu Pi | Qian Liu | Bei Chen | Morteza Ziyadi | Zeqi Lin | Qiang Fu | Yan Gao | Jian-Guang Lou | Weizhu Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning over natural language is a long-standing goal for the research community. However, studies have shown that existing language models are inadequate in reasoning. To address the issue, we present POET, a novel reasoning pre-training paradigm. Through pre-training language models with programs and their execution results, POET empowers language models to harvest the reasoning knowledge possessed by program executors via a data-driven approach. POET is conceptually simple and can be instantiated by different kinds of program executors. In this paper, we showcase two simple instances POET-Math and POET-Logic, in addition to a complex instance, POET-SQL. Experimental results on six benchmarks demonstrate that POET can significantly boost model performance in natural language reasoning, such as numerical reasoning, logical reasoning, and multi-hop reasoning. POET opens a new gate on reasoning-enhancement pre-training, and we hope our analysis would shed light on the future research of reasoning like program executors.

pdf
CodeRetriever: A Large Scale Contrastive Pre-Training Method for Code Search
Xiaonan Li | Yeyun Gong | Yelong Shen | Xipeng Qiu | Hang Zhang | Bolun Yao | Weizhen Qi | Daxin Jiang | Weizhu Chen | Nan Duan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose the CodeRetriever model, which learns the function-level code semantic representations through large-scale code-text contrastive pre-training. We adopt two contrastive learning schemes in CodeRetriever: unimodal contrastive learning and bimodal contrastive learning. For unimodal contrastive learning, we design an unsupervised learning approach to build semantic-related code pairs based on the documentation and function name. For bimodal contrastive learning, we leverage the documentation and in-line comments of code to build code-text pairs. Both contrastive objectives can fully leverage large-scale code corpus for pre-training. Extensive experimental results show that CodeRetriever achieves new state-of-the-art with significant improvement over existing code pre-trained models, on eleven domain/language-specific code search tasks with six programming languages in different code granularity (function-level, snippet-level and statement-level).These results demonstrate the effectiveness and robustness of CodeRetriever.The codes and resources are available at https://github.com/microsoft/AR2/tree/main/CodeRetriever.

pdf
Finding the Dominant Winning Ticket in Pre-Trained Language Models
Zhuocheng Gong | Di He | Yelong Shen | Tie-Yan Liu | Weizhu Chen | Dongyan Zhao | Ji-Rong Wen | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2022

The Lottery Ticket Hypothesis suggests that for any over-parameterized model, a small subnetwork exists to achieve competitive performance compared to the backbone architecture. In this paper, we study whether there is a winning lottery ticket for pre-trained language models, which allow the practitioners to fine-tune the parameters in the ticket but achieve good downstream performance. To achieve this, we regularize the fine-tuning process with L1 distance and explore the subnetwork structure (what we refer to as the “dominant winning ticket”). Empirically, we show that (a) the dominant winning ticket can achieve performance that is comparable with that of the full-parameter model, (b) the dominant winning ticket is transferable across different tasks, (c) and the dominant winning ticket has a natural structure within each parameter matrix. Strikingly, we find that a dominant winning ticket that takes up 0.05% of the parameters can already achieve satisfactory performance, indicating that the PLM is significantly reducible during fine-tuning.

pdf
Controllable Natural Language Generation with Contrastive Prefixes
Jing Qian | Li Dong | Yelong Shen | Furu Wei | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL 2022

To guide the generation of large pretrained language models (LM), previous work has focused on directly fine-tuning the language model or utilizing an attribute discriminator. In this work, we propose a novel lightweight framework for controllable GPT2 generation, which utilizes a set of small attribute-specific vectors, called prefixes (Li and Liang, 2021), to steer natural language generation. Different from Li and Liang (2021), where each prefix is trained independently, we take the relationship among prefixes into consideration and train multiple prefixes simultaneously. We propose a novel supervised method and also an unsupervised method to train the prefixes for single-aspect control while the combination of these two methods can achieve multi-aspect control. Experimental results on both single-aspect and multi-aspect control show that our methods can guide generation towards the desired attributes while keeping high linguistic quality.

pdf
ALLSH: Active Learning Guided by Local Sensitivity and Hardness
Shujian Zhang | Chengyue Gong | Xingchao Liu | Pengcheng He | Weizhu Chen | Mingyuan Zhou
Findings of the Association for Computational Linguistics: NAACL 2022

Active learning, which effectively collects informative unlabeled data for annotation, reduces the demand for labeled data. In this work, we propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function. The proposed method generates data copies through local perturbations and selects data points whose predictive likelihoods diverge the most from their copies. We further empower our acquisition function by injecting the select-worst case perturbation. Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks. Furthermore, we observe consistent improvements over the baselines on the study of prompt selection in prompt-based few-shot learning. These experiments demonstrate that our acquisition guided by local sensitivity and hardness can be effective and beneficial for many NLP tasks.

pdf
Soft-Labeled Contrastive Pre-Training for Function-Level Code Representation
Xiaonan Li | Daya Guo | Yeyun Gong | Yun Lin | Yelong Shen | Xipeng Qiu | Daxin Jiang | Weizhu Chen | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2022

Code contrastive pre-training has recently achieved significant progress on code-related tasks. In this paper, we present SCodeR, a Soft-labeled contrastive pre-training framework with two positive sample construction methods to learn functional-level Code Representation. Considering the relevance between codes in a large-scale code corpus, the soft-labeled contrastive pre-training can obtain fine-grained soft-labels through an iterative adversarial manner and use them to learn better code representation. The positive sample construction is another key for contrastive pre-training. Previous works use transformation-based methods like variable renaming to generate semantically equal positive codes. However, they usually result in the generated code with a highly similar surface form, and thus mislead the model to focus on superficial code structure instead of code semantics. To encourage SCodeR to capture semantic information from the code, we utilize code comments and abstract syntax sub-trees of the code to build positive samples. We conduct experiments on four code-related tasks over seven datasets. Extensive experimental results show that SCodeR achieves new state-of-the-art performance on all of them, which illustrates the effectiveness of the proposed pre-training method.

pdf
What Makes Good In-Context Examples for GPT-3?
Jiachang Liu | Dinghan Shen | Yizhe Zhang | Bill Dolan | Lawrence Carin | Weizhu Chen
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

GPT-3 has attracted lots of attention due to its superior performance across a wide range of NLP tasks, especially with its in-context learning abilities. Despite its success, we found that the empirical results of GPT-3 depend heavily on the choice of in-context examples. In this work, we investigate whether there are more effective strategies for judiciously selecting in-context examples (relative to random sampling) that better leverage GPT-3’s in-context learning capabilities. Inspired by the recent success of leveraging a retrieval module to augment neural networks, we propose to retrieve examples that are semantically-similar to a test query sample to formulate its corresponding prompt. Intuitively, the examples selected with such a strategy may serve as more informative inputs to unleash GPT-3’s power of text generation. We evaluate the proposed approach on several natural language understanding and generation benchmarks, where the retrieval-based prompt selection approach consistently outperforms the random selection baseline. Moreover, it is observed that the sentence encoders fine-tuned on task-related datasets yield even more helpful retrieval results. Notably, significant gains are observed on tasks such as table-to-text generation (44.3% on the ToTTo dataset) and open-domain question answering (45.5% on the NQ dataset).

2021

pdf
UnitedQA: A Hybrid Approach for Open Domain Question Answering
Hao Cheng | Yelong Shen | Xiaodong Liu | Pengcheng He | Weizhu Chen | Jianfeng Gao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel techniques to enhance both extractive and generative readers built upon recent pretrained neural language models, and find that proper training methods can provide large improvement over previous state-of-the-art models. We demonstrate that a simple hybrid approach by combining answers from both readers can efficiently take advantages of extractive and generative answer inference strategies and outperforms single models as well as homogeneous ensembles. Our approach outperforms previous state-of-the-art models by 3.3 and 2.7 points in exact match on NaturalQuestions and TriviaQA respectively.

pdf
Generation-Augmented Retrieval for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.

pdf
HiddenCut: Simple Data Augmentation for Natural Language Understanding with Better Generalizability
Jiaao Chen | Dinghan Shen | Weizhu Chen | Diyi Yang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Fine-tuning large pre-trained models with task-specific data has achieved great success in NLP. However, it has been demonstrated that the majority of information within the self-attention networks is redundant and not utilized effectively during the fine-tuning stage. This leads to inferior results when generalizing the obtained models to out-of-domain distributions. To this end, we propose a simple yet effective data augmentation technique, HiddenCut, to better regularize the model and encourage it to learn more generalizable features. Specifically, contiguous spans within the hidden space are dynamically and strategically dropped during training. Experiments show that our HiddenCut method outperforms the state-of-the-art augmentation methods on the GLUE benchmark, and consistently exhibits superior generalization performances on out-of-distribution and challenging counterexamples. We have publicly released our code at https://github.com/GT-SALT/HiddenCut.

pdf
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization
Chen Liang | Simiao Zuo | Minshuo Chen | Haoming Jiang | Xiaodong Liu | Pengcheng He | Tuo Zhao | Weizhu Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The Lottery Ticket Hypothesis suggests that an over-parametrized network consists of ”lottery tickets”, and training a certain collection of them (i.e., a subnetwork) can match the performance of the full model. In this paper, we study such a collection of tickets, which is referred to as ”winning tickets”, in extremely over-parametrized models, e.g., pre-trained language models. We observe that at certain compression ratios, the generalization performance of the winning tickets can not only match but also exceed that of the full model. In particular, we observe a phase transition phenomenon: As the compression ratio increases, generalization performance of the winning tickets first improves then deteriorates after a certain threshold. We refer to the tickets on the threshold as ”super tickets”. We further show that the phase transition is task and model dependent — as the model size becomes larger and the training data set becomes smaller, the transition becomes more pronounced. Our experiments on the GLUE benchmark show that the super tickets improve single task fine-tuning by 0.9 points on BERT-base and 1.0 points on BERT-large, in terms of task-average score. We also demonstrate that adaptively sharing the super tickets across tasks benefits multi-task learning.

pdf
Reader-Guided Passage Reranking for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
GLGE: A New General Language Generation Evaluation Benchmark
Dayiheng Liu | Yu Yan | Yeyun Gong | Weizhen Qi | Hang Zhang | Jian Jiao | Weizhu Chen | Jie Fu | Linjun Shou | Ming Gong | Pengcheng Wang | Jiusheng Chen | Daxin Jiang | Jiancheng Lv | Ruofei Zhang | Winnie Wu | Ming Zhou | Nan Duan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Memory-Efficient Differentiable Transformer Architecture Search
Yuekai Zhao | Li Dong | Yelong Shen | Zhihua Zhang | Furu Wei | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Token-wise Curriculum Learning for Neural Machine Translation
Chen Liang | Haoming Jiang | Xiaodong Liu | Pengcheng He | Weizhu Chen | Jianfeng Gao | Tuo Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of “easy” samples from training data at the early training stage. This is not always achievable for low-resource languages where the amount of training data is limited. To address such a limitation, we propose a novel token-wise curriculum learning approach that creates sufficient amounts of easy samples. Specifically, the model learns to predict a short sub-sequence from the beginning part of each target sentence at the early stage of training. Then the sub-sequence is gradually expanded as the training progresses. Such a new curriculum design is inspired by the cumulative effect of translation errors, which makes the latter tokens more challenging to predict than the beginning ones. Extensive experiments show that our approach can consistently outperform baselines on five language pairs, especially for low-resource languages. Combining our approach with sentence-level methods further improves the performance of high-resource languages.

pdf
ARCH: Efficient Adversarial Regularized Training with Caching
Simiao Zuo | Chen Liang | Haoming Jiang | Pengcheng He | Xiaodong Liu | Jianfeng Gao | Weizhu Chen | Tuo Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

Adversarial regularization can improve model generalization in many natural language processing tasks. However, conventional approaches are computationally expensive since they need to generate a perturbation for each sample in each epoch. We propose a new adversarial regularization method ARCH (adversarial regularization with caching), where perturbations are generated and cached once every several epochs. As caching all the perturbations imposes memory usage concerns, we adopt a K-nearest neighbors-based strategy to tackle this issue. The strategy only requires caching a small amount of perturbations, without introducing additional training time. We evaluate our proposed method on a set of neural machine translation and natural language understanding tasks. We observe that ARCH significantly eases the computational burden (saves up to 70% of computational time in comparison with conventional approaches). More surprisingly, by reducing the variance of stochastic gradients, ARCH produces a notably better (in most of the tasks) or comparable model generalization. Our code is publicly available.

pdf
Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach
Simiao Zuo | Chen Liang | Haoming Jiang | Xiaodong Liu | Pengcheng He | Jianfeng Gao | Weizhu Chen | Tuo Zhao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Adversarial regularization has been shown to improve the generalization performance of deep learning models in various natural language processing tasks. Existing works usually formulate the method as a zero-sum game, which is solved by alternating gradient descent/ascent algorithms. Such a formulation treats the adversarial and the defending players equally, which is undesirable because only the defending player contributes to the generalization performance. To address this issue, we propose Stackelberg Adversarial Regularization (SALT), which formulates adversarial regularization as a Stackelberg game. This formulation induces a competition between a leader and a follower, where the follower generates perturbations, and the leader trains the model subject to the perturbations. Different from conventional approaches, in SALT, the leader is in an advantageous position. When the leader moves, it recognizes the strategy of the follower and takes the anticipated follower’s outcomes into consideration. Such a leader’s advantage enables us to improve the model fitting to the unperturbed data. The leader’s strategic information is captured by the Stackelberg gradient, which is obtained using an unrolling algorithm. Our experimental results on a set of machine translation and natural language understanding tasks show that SALT outperforms existing adversarial regularization baselines across all tasks. Our code is publicly available.

pdf
Few-Shot Named Entity Recognition: An Empirical Baseline Study
Jiaxin Huang | Chunyuan Li | Krishan Subudhi | Damien Jose | Shobana Balakrishnan | Weizhu Chen | Baolin Peng | Jianfeng Gao | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents an empirical study to efficiently build named entity recognition (NER) systems when a small amount of in-domain labeled data is available. Based upon recent Transformer-based self-supervised pre-trained language models (PLMs), we investigate three orthogonal schemes to improve model generalization ability in few-shot settings: (1) meta-learning to construct prototypes for different entity types, (2) task-specific supervised pre-training on noisy web data to extract entity-related representations and (3) self-training to leverage unlabeled in-domain data. On 10 public NER datasets, we perform extensive empirical comparisons over the proposed schemes and their combinations with various proportions of labeled data, our experiments show that (i)in the few-shot learning setting, the proposed NER schemes significantly improve or outperform the commonly used baseline, a PLM-based linear classifier fine-tuned using domain labels. (ii) We create new state-of-the-art results on both few-shot and training-free settings compared with existing methods.

pdf
Finetuning Pretrained Transformers into RNNs
Jungo Kasai | Hao Peng | Yizhe Zhang | Dani Yogatama | Gabriel Ilharco | Nikolaos Pappas | Yi Mao | Weizhu Chen | Noah A. Smith
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformers have outperformed recurrent neural networks (RNNs) in natural language generation. But this comes with a signifi- cant computational cost, as the attention mechanism’s complexity scales quadratically with sequence length. Efficient transformer variants have received increasing interest in recent works. Among them, a linear-complexity recurrent variant has proven well suited for autoregressive generation. It approximates the softmax attention with randomized or heuristic feature maps, but can be difficult to train and may yield suboptimal accuracy. This work aims to convert a pretrained transformer into its efficient recurrent counterpart, improving efficiency while maintaining accuracy. Specifically, we propose a swap-then-finetune procedure: in an off-the-shelf pretrained transformer, we replace the softmax attention with its linear-complexity recurrent alternative and then finetune. With a learned feature map, our approach provides an improved tradeoff between efficiency and accuracy over the standard transformer and other recurrent variants. We also show that the finetuning process has lower training cost relative to training these recurrent variants from scratch. As many models for natural language tasks are increasingly dependent on large-scale pretrained transformers, this work presents a viable approach to improving inference efficiency without repeating the expensive pretraining process.

2020

pdf
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Haoming Jiang | Pengcheng He | Weizhu Chen | Xiaodong Liu | Jianfeng Gao | Tuo Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Transfer learning has fundamentally changed the landscape of natural language processing (NLP). Many state-of-the-art models are first pre-trained on a large text corpus and then fine-tuned on downstream tasks. However, due to limited data resources from downstream tasks and the extremely high complexity of pre-trained models, aggressive fine-tuning often causes the fine-tuned model to overfit the training data of downstream tasks and fail to generalize to unseen data. To address such an issue in a principled manner, we propose a new learning framework for robust and efficient fine-tuning for pre-trained models to attain better generalization performance. The proposed framework contains two important ingredients: 1. Smoothness-inducing regularization, which effectively manages the complexity of the model; 2. Bregman proximal point optimization, which is an instance of trust-region methods and can prevent aggressive updating. Our experiments show that the proposed framework achieves new state-of-the-art performance on a number of NLP tasks including GLUE, SNLI, SciTail and ANLI. Moreover, it also outperforms the state-of-the-art T5 model, which is the largest pre-trained model containing 11 billion parameters, on GLUE.

pdf
The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding
Xiaodong Liu | Yu Wang | Jianshu Ji | Hao Cheng | Xueyun Zhu | Emmanuel Awa | Pengcheng He | Weizhu Chen | Hoifung Poon | Guihong Cao | Jianfeng Gao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models. Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks, using a variety of objectives (classification, regression, structured prediction) and text encoders (e.g., RNNs, BERT, RoBERTa, UniLM). A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm. To enable efficient production deployment, MT-DNN supports multi-task knowledge distillation, which can substantially compress a deep neural model without significant performance drop. We demonstrate the effectiveness of MT-DNN on a wide range of NLU applications across general and biomedical domains. The software and pre-trained models will be publicly available at https://github.com/namisan/mt-dnn.

pdf
Understanding the Difficulty of Training Transformers
Liyuan Liu | Xiaodong Liu | Jianfeng Gao | Weizhu Chen | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding carefully designing cutting-edge optimizers and learning rate schedulers (e.g., conventional SGD fails to train Transformers effectively). Our objective here is to understand __what complicates Transformer training__ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially—for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin (Adaptive model initialization) to stabilize the early stage’s training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance

pdf
Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning
Tao Shen | Yi Mao | Pengcheng He | Guodong Long | Adam Trischler | Weizhu Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition, we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective that is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmarks, including question answering and knowledge base completion.

2019

pdf
Multi-Task Deep Neural Networks for Natural Language Understanding
Xiaodong Liu | Pengcheng He | Weizhu Chen | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we present a Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks. MT-DNN not only leverages large amounts of cross-task data, but also benefits from a regularization effect that leads to more general representations to help adapt to new tasks and domains. MT-DNN extends the model proposed in Liu et al. (2015) by incorporating a pre-trained bidirectional transformer language model, known as BERT (Devlin et al., 2018). MT-DNN obtains new state-of-the-art results on ten NLU tasks, including SNLI, SciTail, and eight out of nine GLUE tasks, pushing the GLUE benchmark to 82.7% (2.2% absolute improvement) as of February 25, 2019 on the latest GLUE test set. We also demonstrate using the SNLI and SciTail datasets that the representations learned by MT-DNN allow domain adaptation with substantially fewer in-domain labels than the pre-trained BERT representations. Our code and pre-trained models will be made publicly available.

pdf
Learning to Attend On Essential Terms: An Enhanced Retriever-Reader Model for Open-domain Question Answering
Jianmo Ni | Chenguang Zhu | Weizhu Chen | Julian McAuley
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Open-domain question answering remains a challenging task as it requires models that are capable of understanding questions and answers, collecting useful information, and reasoning over evidence. Previous work typically formulates this task as a reading comprehension or entailment problem given evidence retrieved from search engines. However, existing techniques struggle to retrieve indirectly related evidence when no directly related evidence is provided, especially for complex questions where it is hard to parse precisely what the question asks. In this paper we propose a retriever-reader model that learns to attend on essential terms during the question answering process. We build (1) an essential term selector which first identifies the most important words in a question, then reformulates the query and searches for related evidence; and (2) an enhanced reader that distinguishes between essential terms and distracting words to predict the answer. We evaluate our model on multiple open-domain QA datasets, notably achieving the level of the state-of-the-art on the AI2 Reasoning Challenge (ARC) dataset.

pdf
Parameter-free Sentence Embedding via Orthogonal Basis
Ziyi Yang | Chenguang Zhu | Weizhu Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a simple and robust non-parameterized approach for building sentence representations. Inspired by the Gram-Schmidt Process in geometric theory, we build an orthogonal basis of the subspace spanned by a word and its surrounding context in a sentence. We model the semantic meaning of a word in a sentence based on two aspects. One is its relatedness to the word vector subspace already spanned by its contextual words. The other is the word’s novel semantic meaning which shall be introduced as a new basis vector perpendicular to this existing subspace. Following this motivation, we develop an innovative method based on orthogonal basis to combine pre-trained word embeddings into sentence representations. This approach requires zero parameters, along with efficient inference performance. We evaluate our approach on 11 downstream NLP tasks. Our model shows superior performance compared with non-parameterized alternatives and it is competitive to other approaches relying on either large amounts of labelled data or prolonged training time.

pdf bib
A Hybrid Neural Network Model for Commonsense Reasoning
Pengcheng He | Xiaodong Liu | Weizhu Chen | Jianfeng Gao
Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing

This paper proposes a hybrid neural network(HNN) model for commonsense reasoning. An HNN consists of two component models, a masked language model and a semantic similarity model, which share a BERTbased contextual encoder but use different model-specific input and output layers. HNN obtains new state-of-the-art results on three classic commonsense reasoning tasks, pushing the WNLI benchmark to 89%, the Winograd Schema Challenge (WSC) benchmark to 75.1%, and the PDP60 benchmark to 90.0%. An ablation study shows that language models and semantic similarity models are complementary approaches to commonsense reasoning, and HNN effectively combines the strengths of both. The code and pre-trained models will be publicly available at https: //github.com/namisan/mt-dnn.
Search
Co-authors
Venues