Weize Liu


2024

pdf
Mind’s Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models
Weize Liu | Guocong Li | Kai Zhang | Bang Du | Qiyuan Chen | Xuming Hu | Hongxia Xu | Jintai Chen | Jian Wu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) have achieved remarkable advancements in natural language processing. However, the massive scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained environments. While techniques such as chain-of-thought (CoT) distillation have displayed promise in distilling LLMs into small language models (SLMs), there is a risk that distilled SLMs may still inherit flawed reasoning and hallucinations from LLMs. To address these issues, we propose a twofold methodology: First, we introduce a novel method for distilling the self-evaluation capability from LLMs into SLMs, aiming to mitigate the adverse effects of flawed reasoning and hallucinations inherited from LLMs. Second, we advocate for distilling more comprehensive thinking by incorporating multiple distinct CoTs and self-evaluation outputs, to ensure a more thorough and robust knowledge transfer into SLMs. Experiments on three NLP benchmarks demonstrate that our method significantly improves the performance of distilled SLMs, offering a new perspective for developing more effective and efficient SLMs in resource-constrained environments.

2023

pdf
Text2Tree: Aligning Text Representation to the Label Tree Hierarchy for Imbalanced Medical Classification
Jiahuan Yan | Haojun Gao | Zhang Kai | Weize Liu | Danny Chen | Jian Wu | Jintai Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Deep learning approaches exhibit promising performances on various text tasks. However, they are still struggling on medical text classification since samples are often extremely imbalanced and scarce. Different from existing mainstream approaches that focus on supplementary semantics with external medical information, this paper aims to rethink the data challenges in medical texts and present a novel framework-agnostic algorithm called Text2Tree that only utilizes internal label hierarchy in training deep learning models. We embed the ICD code tree structure of labels into cascade attention modules for learning hierarchy-aware label representations. Two new learning schemes, Similarity Surrogate Learning (SSL) and Dissimilarity Mixup Learning (DML), are devised to boost text classification by reusing and distinguishing samples of other labels following the label representation hierarchy, respectively. Experiments on authoritative public datasets and real-world medical records show that our approach stably achieves superior performances over classical and advanced imbalanced classification methods. Our code is available at https://github.com/jyansir/Text2Tree.