Weili Liu


2021

pdf
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
Qingyun Wang | Manling Li | Xuan Wang | Nikolaus Parulian | Guangxing Han | Jiawei Ma | Jingxuan Tu | Ying Lin | Ranran Haoran Zhang | Weili Liu | Aabhas Chauhan | Yingjun Guan | Bangzheng Li | Ruisong Li | Xiangchen Song | Yi Fung | Heng Ji | Jiawei Han | Shih-Fu Chang | James Pustejovsky | Jasmine Rah | David Liem | Ahmed ELsayed | Martha Palmer | Clare Voss | Cynthia Schneider | Boyan Onyshkevych
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.

2020

pdf
EVIDENCEMINER: Textual Evidence Discovery for Life Sciences
Xuan Wang | Yingjun Guan | Weili Liu | Aabhas Chauhan | Enyi Jiang | Qi Li | David Liem | Dibakar Sigdel | John Caufield | Peipei Ping | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEMINER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover important research issues, leading to more effective research and more in-depth quantitative analysis. The system of EVIDENCEMINER is available at https://evidenceminer.firebaseapp.com/.