A growing interest emerges in event extraction which aims to extract multiple events with triggers and arguments. Previous methods mitigate the problem of multiple events extraction by predicting the arguments conditioned on the event trigger and event type, assuming that these arguments belong to a single event. However, the assumption is invalid in general as there may be multiple events. Therefore, we present a unified framework called MatEE for trigger-sharing events extraction. It resolves the kernel bottleneck by effectively modeling the relations between arguments by an event matrix, where trigger-sharing events are represented by multiple cliques. We verify the proposed method on 3 widely-used benchmark datasets of event extraction. The experimental results show that it beats all the advanced competitors, significantly improving the state-of-the-art performances in event extraction.
Chinese Spelling Check (CSC) is a task to detect and correct spelling errors in Chinese natural language. Existing methods have made attempts to incorporate the similarity knowledge between Chinese characters. However, they take the similarity knowledge as either an external input resource or just heuristic rules. This paper proposes to incorporate phonological and visual similarity knowledge into language models for CSC via a specialized graph convolutional network (SpellGCN). The model builds a graph over the characters, and SpellGCN is learned to map this graph into a set of inter-dependent character classifiers. These classifiers are applied to the representations extracted by another network, such as BERT, enabling the whole network to be end-to-end trainable. Experiments are conducted on three human-annotated datasets. Our method achieves superior performance against previous models by a large margin.
Numerical reasoning over texts, such as addition, subtraction, sorting and counting, is a challenging machine reading comprehension task, since it requires both natural language understanding and arithmetic computation. To address this challenge, we propose a heterogeneous graph representation for the context of the passage and question needed for such reasoning, and design a question directed graph attention network to drive multi-step numerical reasoning over this context graph. Our model, which combines deep learning and graph reasoning, achieves remarkable results in benchmark datasets such as DROP.
Aspect-term sentiment analysis (ATSA) is a long-standing challenge in natural language process. It requires fine-grained semantical reasoning about a target entity appeared in the text. As manual annotation over the aspects is laborious and time-consuming, the amount of labeled data is limited for supervised learning. This paper proposes a semi-supervised method for the ATSA problem by using the Variational Autoencoder based on Transformer. The model learns the latent distribution via variational inference. By disentangling the latent representation into the aspect-specific sentiment and the lexical context, our method induces the underlying sentiment prediction for the unlabeled data, which then benefits the ATSA classifier. Our method is classifier-agnostic, i.e., the classifier is an independent module and various supervised models can be integrated. Experimental results are obtained on the SemEval 2014 task 4 and show that our method is effective with different the five specific classifiers and outperforms these models by a significant margin.