Wanqing Cui


2024

pdf
MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning
Wanqing Cui | Keping Bi | Jiafeng Guo | Xueqi Cheng
Findings of the Association for Computational Linguistics ACL 2024

Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models’ commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities.

2020

pdf
Beyond Language: Learning Commonsense from Images for Reasoning
Wanqing Cui | Yanyan Lan | Liang Pang | Jiafeng Guo | Xueqi Cheng
Findings of the Association for Computational Linguistics: EMNLP 2020

This paper proposes a novel approach to learn commonsense from images, instead of limited raw texts or costly constructed knowledge bases, for the commonsense reasoning problem in NLP. Our motivation comes from the fact that an image is worth a thousand words, where richer scene information could be leveraged to help distill the commonsense knowledge, which is often hidden in languages. Our approach, namely Loire, consists of two stages. In the first stage, a bi-modal sequence-to-sequence approach is utilized to conduct the scene layout generation task, based on a text representation model ViBERT. In this way, the required visual scene knowledge, such as spatial relations, will be encoded in ViBERT by the supervised learning process with some bi-modal data like COCO. Then ViBERT is concatenated with a pre-trained language model to perform the downstream commonsense reasoning tasks. Experimental results on two commonsense reasoning problems, i.e.commonsense question answering and pronoun resolution, demonstrate that Loire outperforms traditional language-based methods. We also give some case studies to show what knowledge is learned from images and explain how the generated scene layout helps the commonsense reasoning process.