This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We develop a novel approach for confidently accelerating inference in the large and expensive multilayer Transformers that are now ubiquitous in natural language processing (NLP). Amortized or approximate computational methods increase efficiency, but can come with unpredictable performance costs. In this work, we present CATs – Confident Adaptive Transformers – in which we simultaneously increase computational efficiency, while guaranteeing a specifiable degree of consistency with the original model with high confidence. Our method trains additional prediction heads on top of intermediate layers, and dynamically decides when to stop allocating computational effort to each input using a meta consistency classifier. To calibrate our early prediction stopping rule, we formulate a unique extension of conformal prediction. We demonstrate the effectiveness of this approach on four classification and regression tasks.
We propose Blank Language Model (BLM), a model that generates sequences by dynamically creating and filling in blanks. The blanks control which part of the sequence to expand, making BLM ideal for a variety of text editing and rewriting tasks. The model can start from a single blank or partially completed text with blanks at specified locations. It iteratively determines which word to place in a blank and whether to insert new blanks, and stops generating when no blanks are left to fill. BLM can be efficiently trained using a lower bound of the marginal data likelihood. On the task of filling missing text snippets, BLM significantly outperforms all other baselines in terms of both accuracy and fluency. Experiments on style transfer and damaged ancient text restoration demonstrate the potential of this framework for a wide range of applications.
Selective rationalization has become a common mechanism to ensure that predictive models reveal how they use any available features. The selection may be soft or hard, and identifies a subset of input features relevant for prediction. The setup can be viewed as a co-operate game between the selector (aka rationale generator) and the predictor making use of only the selected features. The co-operative setting may, however, be compromised for two reasons. First, the generator typically has no direct access to the outcome it aims to justify, resulting in poor performance. Second, there’s typically no control exerted on the information left outside the selection. We revise the overall co-operative framework to address these challenges. We introduce an introspective model which explicitly predicts and incorporates the outcome into the selection process. Moreover, we explicitly control the rationale complement via an adversary so as not to leave any useful information out of the selection. We show that the two complementary mechanisms maintain both high predictive accuracy and lead to comprehensive rationales.
Cross-lingual or cross-domain correspondences play key roles in tasks ranging from machine translation to transfer learning. Recently, purely unsupervised methods operating on monolingual embeddings have become effective alignment tools. Current state-of-the-art methods, however, involve multiple steps, including heuristic post-hoc refinement strategies. In this paper, we cast the correspondence problem directly as an optimal transport (OT) problem, building on the idea that word embeddings arise from metric recovery algorithms. Indeed, we exploit the Gromov-Wasserstein distance that measures how similarities between pairs of words relate across languages. We show that our OT objective can be estimated efficiently, requires little or no tuning, and results in performance comparable with the state-of-the-art in various unsupervised word translation tasks.
We interpret the predictions of any black-box structured input-structured output model around a specific input-output pair. Our method returns an “explanation” consisting of groups of input-output tokens that are causally related. These dependencies are inferred by querying the model with perturbed inputs, generating a graph over tokens from the responses, and solving a partitioning problem to select the most relevant components. We focus the general approach on sequence-to-sequence problems, adopting a variational autoencoder to yield meaningful input perturbations. We test our method across several NLP sequence generation tasks.
We introduce a neural method for transfer learning between two (source and target) classification tasks or aspects over the same domain. Rather than training on target labels, we use a few keywords pertaining to source and target aspects indicating sentence relevance instead of document class labels. Documents are encoded by learning to embed and softly select relevant sentences in an aspect-dependent manner. A shared classifier is trained on the source encoded documents and labels, and applied to target encoded documents. We ensure transfer through aspect-adversarial training so that encoded documents are, as sets, aspect-invariant. Experimental results demonstrate that our approach outperforms different baselines and model variants on two datasets, yielding an improvement of 27% on a pathology dataset and 5% on a review dataset.
Most state-of-the-art systems today produce morphological analysis based only on orthographic patterns. In contrast, we propose a model for unsupervised morphological analysis that integrates orthographic and semantic views of words. We model word formation in terms of morphological chains, from base words to the observed words, breaking the chains into parent-child relations. We use log-linear models with morpheme and word-level features to predict possible parents, including their modifications, for each word. The limited set of candidate parents for each word render contrastive estimation feasible. Our model consistently matches or outperforms five state-of-the-art systems on Arabic, English and Turkish.