This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models have demonstrated impressive performance on commonsense tasks; however, these tasks are often posed as multiple-choice questions, allowing models to exploit systematic biases. Commonsense is also inherently probabilistic with multiple correct answers. The purpose of “boiling water” could be making tea, cooking but also could be killing germs. Existing tasks do not capture the probabilistic nature of common sense. To this end, we present commonsense frame completion (CFC), a new generative task that evaluates common sense via multiple open-ended generations. We also propose a method of probabilistic evaluation that strongly correlates with human judgments. Humans drastically outperform strong language model baselines on our dataset, indicating this approach is both a challenging and useful evaluation of machine common sense.
At the foundation of scientific evaluation is the labor-intensive process of peer review. This critical task requires participants to consume vast amounts of highly technical text. Prior work has annotated different aspects of review argumentation, but discourse relations between reviews and rebuttals have yet to be examined. We present DISAPERE, a labeled dataset of 20k sentences contained in 506 review-rebuttal pairs in English, annotated by experts. DISAPERE synthesizes label sets from prior work and extends them to include fine-grained annotation of the rebuttal sentences, characterizing their context in the review and the authors’ stance towards review arguments. Further, we annotate every review and rebuttal sentence. We show that discourse cues from rebuttals can shed light on the quality and interpretation of reviews. Further, an understanding of the argumentative strategies employed by the reviewers and authors provides useful signal for area chairs and other decision makers.
Despite extensive research on parsing of English sentences into Abstract Meaning Representation (AMR) graphs, which are compared to gold graphs via the Smatch metric, full-document parsing into a unified graph representation lacks well-defined representation and evaluation. Taking advantage of a super-sentential level of coreference annotation from previous work, we introduce a simple algorithm for deriving a unified graph representation, avoiding the pitfalls of information loss from over-merging and lack of coherence from under merging. Next, we describe improvements to the Smatch metric to make it tractable for comparing document-level graphs and use it to re-evaluate the best published document-level AMR parser. We also present a pipeline approach combining the top-performing AMR parser and coreference resolution systems, providing a strong baseline for future research.
This tutorial reviews the design of common meaning representations, SoTA models for predicting meaning representations, and the applications of meaning representations in a wide range of downstream NLP tasks and real-world applications. Reporting by a diverse team of NLP researchers from academia and industry with extensive experience in designing, building and using meaning representations, our tutorial has three components: (1) an introduction to common meaning representations, including basic concepts and design challenges; (2) a review of SoTA methods on building models for meaning representations; and (3) an overview of applications of meaning representations in downstream NLP tasks and real-world applications. We will also present qualitative comparisons of common meaning representations and a quantitative study on how their differences impact model performance. Finally, we will share best practices in choosing the right meaning representation for downstream tasks.
This paper describes the evolution of the PropBank approach to semantic role labeling over the last two decades. During this time the PropBank frame files have been expanded to include non-verbal predicates such as adjectives, prepositions and multi-word expressions. The number of domains, genres and languages that have been PropBanked has also expanded greatly, creating an opportunity for much more challenging and robust testing of the generalization capabilities of PropBank semantic role labeling systems. We also describe the substantial effort that has gone into ensuring the consistency and reliability of the various annotated datasets and resources, to better support the training and evaluation of such systems
Computational resources such as semantically annotated corpora can play an important role in enabling speakers of indigenous minority languages to participate in government, education, and other domains of public life in their own language. However, many languages – mainly those with small native speaker populations and without written traditions – have little to no digital support. One hurdle in creating such resources is that for many languages, few speakers would be capable of annotating texts – a task which requires literacy and some linguistic training – and that these experts’ time is typically in high demand for language planning work. This paper assesses whether typologically trained non-speakers of an indigenous language can feasibly perform semantic annotation using Uniform Meaning Representations, thus allowing for the creation of computational materials without putting further strain on community resources.
Material science synthesis procedures are a promising domain for scientific NLP, as proper modeling of these recipes could provide insight into new ways of creating materials. However, a fundamental challenge in building information extraction models for material science synthesis procedures is getting accurate labels for the materials, operations, and other entities of those procedures. We present a new corpus of entity mention annotations over 595 Material Science synthesis procedural texts (157,488 tokens), which greatly expands the training data available for the Named Entity Recognition task. We outline a new label inventory designed to provide consistent annotations and a new annotation approach intended to maximize the consistency and annotation speed of domain experts. Inter-annotator agreement studies and baseline models trained upon the data suggest that the corpus provides high-quality annotations of these mention types. This corpus helps lay a foundation for future high-quality modeling of synthesis procedures.
For over thirty years, researchers have developed and analyzed methods for latent tree induction as an approach for unsupervised syntactic parsing. Nonetheless, modern systems still do not perform well enough compared to their supervised counterparts to have any practical use as structural annotation of text. In this work, we present a technique that uses distant supervision in the form of span constraints (i.e. phrase bracketing) to improve performance in unsupervised constituency parsing. Using a relatively small number of span constraints we can substantially improve the output from DIORA, an already competitive unsupervised parsing system. Compared with full parse tree annotation, span constraints can be acquired with minimal effort, such as with a lexicon derived from Wikipedia, to find exact text matches. Our experiments show span constraints based on entities improves constituency parsing on English WSJ Penn Treebank by more than 5 F1. Furthermore, our method extends to any domain where span constraints are easily attainable, and as a case study we demonstrate its effectiveness by parsing biomedical text from the CRAFT dataset.
This paper presents a “road map” for the annotation of semantic categories in typologically diverse languages, with potentially few linguistic resources, and often no existing computational resources. Past semantic annotation efforts have focused largely on high-resource languages, or relatively low-resource languages with a large number of native speakers. However, there are certain typological traits, namely the synthesis of multiple concepts into a single word, that are more common in languages with a smaller speech community. For example, what is expressed as a sentence in a more analytic language like English, may be expressed as a single word in a more synthetic language like Arapaho. This paper proposes solutions for annotating analytic and synthetic languages in a comparable way based on existing typological research, and introduces a road map for the annotation of languages with a dearth of resources.
The 2020 Shared Task at the Conference for Computational Language Learning (CoNLL) was devoted to Meaning Representation Parsing (MRP) across frameworks and languages. Extending a similar setup from the previous year, five distinct approaches to the representation of sentence meaning in the form of directed graphs were represented in the English training and evaluation data for the task, packaged in a uniform graph abstraction and serialization; for four of these representation frameworks, additional training and evaluation data was provided for one additional language per framework. The task received submissions from eight teams, of which two do not participate in the official ranking because they arrived after the closing deadline or made use of additional training data. All technical information regarding the task, including system submissions, official results, and links to supporting resources and software are available from the task web site at: http://mrp.nlpl.eu
In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus.
Given questions regarding some prototypical situation — such as Name something that people usually do before they leave the house for work? — a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international trivia game show – Family Feud. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
The deep inside-outside recursive autoencoder (DIORA; Drozdov et al. 2019) is a self-supervised neural model that learns to induce syntactic tree structures for input sentences *without access to labeled training data*. In this paper, we discover that while DIORA exhaustively encodes all possible binary trees of a sentence with a soft dynamic program, its vector averaging approach is locally greedy and cannot recover from errors when computing the highest scoring parse tree in bottom-up chart parsing. To fix this issue, we introduce S-DIORA, an improved variant of DIORA that encodes a single tree rather than a softly-weighted mixture of trees by employing a hard argmax operation and a beam at each cell in the chart. Our experiments show that through *fine-tuning* a pre-trained DIORA with our new algorithm, we improve the state of the art in *unsupervised* constituency parsing on the English WSJ Penn Treebank by 2.2-6% F1, depending on the data used for fine-tuning.
The 2019 Shared Task at the Conference for Computational Language Learning (CoNLL) was devoted to Meaning Representation Parsing (MRP) across frameworks. Five distinct approaches to the representation of sentence meaning in the form of directed graph were represented in the training and evaluation data for the task, packaged in a uniform abstract graph representation and serialization. The task received submissions from eighteen teams, of which five do not participate in the official ranking because they arrived after the closing deadline, made use of additional training data, or involved one of the task co-organizers. All technical information regarding the task, including system submissions, official results, and links to supporting resources and software are available from the task web site at: http://mrp.nlpl.eu
There are few corpora that endeavor to represent the semantic content of entire documents. We present a corpus that accomplishes one way of capturing document level semantics, by annotating coreference and similar phenomena (bridging and implicit roles) on top of gold Abstract Meaning Representations of sentence-level semantics. We present a new corpus of this annotation, with analysis of its quality, alongside a plausible baseline for comparison. It is hoped that this Multi-Sentence AMR corpus (MS-AMR) may become a feasible method for developing rich representations of document meaning, useful for tasks such as information extraction and question answering.
We consider the semantics of prepositions, revisiting a broad-coverage annotation scheme used for annotating all 4,250 preposition tokens in a 55,000 word corpus of English. Attempts to apply the scheme to adpositions and case markers in other languages, as well as some problematic cases in English, have led us to reconsider the assumption that an adposition’s lexical contribution is equivalent to the role/relation that it mediates. Our proposal is to embrace the potential for construal in adposition use, expressing such phenomena directly at the token level to manage complexity and avoid sense proliferation. We suggest a framework to represent both the scene role and the adposition’s lexical function so they can be annotated at scale—supporting automatic, statistical processing of domain-general language—and discuss how this representation would allow for a simpler inventory of labels.