This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
While large neural-based conversational models have become increasingly proficient dialogue agents, recent work has highlighted safety issues with these systems. For example, these systems can be goaded into generating toxic content, often perpetuating social biases or stereotypes. We investigate a retrieval-based approach for reducing bias and toxicity in responses from chatbots. It uses in-context learning to steer a model towards safer generations. Concretely, to generate a response to an unsafe dialogue context, we retrieve demonstrations of safe responses to similar dialogue contexts. We find our method performs competitively with existing approaches to dialogue safety without requiring training. We also show, using automatic and human evaluation, that reductions in toxicity obtained using our approach are not at the cost engagingness or coherency. Finally, we note our method can be used in compliment to existing dialogue safety approaches, such as RLHF.
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer’s expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
Task-oriented Dialogue (TOD) Systems aim to build dialogue systems that assist users in accomplishing specific goals, such as booking a hotel or a restaurant. Traditional TODs rely on domain-specific APIs/DBs or external factual knowledge to generate responses, which cannot accommodate subjective user requests (e.g.,”Is the WIFI reliable?” or “Does the restaurant have a good atmosphere?”). To address this issue, we propose a novel task of subjective-knowledge-based TOD (SK-TOD). We also propose the first corresponding dataset, which contains subjective knowledge-seeking dialogue contexts and manually annotated responses grounded in subjective knowledge sources. When evaluated with existing TOD approaches, we find that this task poses new challenges such as aggregating diverse opinions from multiple knowledge snippets. We hope this task and dataset can promote further research on TOD and subjective content understanding. The code and the dataset are available at https://github.com/alexa/dstc11-track5.
Embodied task completion is a challenge where an agent in a simulated environment must predict environment actions to complete tasks based on natural language instructions and ego-centric visual observations. We propose a variant of this problem where the agent predicts actions at a higher level of abstraction called a plan, which helps make agent actions more interpretable and can be obtained from the appropriate prompting of large language models. We show that multimodal transformer models can outperform language-only models for this problem but fall significantly short of oracle plans. Since collecting human-human dialogues for embodied environments is expensive and time-consuming, we propose a method to synthetically generate such dialogues, which we then use as training data for plan prediction. We demonstrate that multimodal transformer models can attain strong zero-shot performance from our synthetic data, outperforming language-only models trained on human-human data.
Conventional Task-oriented Dialogue (TOD) Systems rely on domain-specific APIs/DBs or external factual knowledge to create responses. In DSTC11 track 5, we aims to provide a new challenging task to accommodate subjective user requests (e.g.,”Is the WIFI reliable?” or “Does the restaurant have a good atmosphere?” into TOD. We release a benchmark dataset, which contains subjective knowledge-seeking dialogue contexts and manually annotated responses that are grounded in subjective knowledge sources. The challenge track received a total of 48 entries from 14 participating teams.
Embodied agents need to be able to interact in natural language – understanding task descriptions and asking appropriate follow up questions to obtain necessary information to be effective at successfully accomplishing tasks for a wide range of users. In this work, we propose a set of dialog acts for modelling such dialogs and annotate the TEACh dataset that includes over 3,000 situated, task oriented conversations (consisting of 39.5k utterances in total) with dialog acts. To our knowledge,TEACh-DA is the first large scale dataset of dialog act annotations for embodied task completion. Furthermore, we demonstrate the use of this annotated dataset in training models for tagging the dialog acts of a given utterance, predicting the dialog act of the next response given a dialog history, and use the dialog acts to guide agent’s non-dialog behaviour. In particular, our experiments on the TEACh Execution from Dialog History task where the model predicts the sequence of low level actions to be executed in the environment for embodied task completion, demonstrate that dialog acts can improve end performance by up to 2 points compared to the system without dialog acts.
Embodied Vision and Language Task Completion requires an embodied agent to interpret natural language instructions and egocentric visual observations to navigate through and interact with environments. In this work, we examine ALFRED, a challenging benchmark for embodied task completion, with the goal of gaining insight into how effectively models utilize language. We find evidence that sequence-to-sequence and transformer-based models trained on this benchmark are not sufficiently sensitive to changes in input language instructions. Next, we construct a new test split – ALFRED-L to test whether ALFRED models can generalize to task structures not seen during training that intuitively require the same types of language understanding required in ALFRED. Evaluation of existing models on ALFRED-L suggests that (a) models are overly reliant on the sequence in which objects are visited in typical ALFRED trajectories and fail to adapt to modifications of this sequence and (b) models trained with additional augmented trajectories are able to adapt relatively better to such changes in input language instructions.
Prompting inputs with natural language task descriptions has emerged as a popular mechanism to elicit reasonably accurate outputs from large-scale generative language models with little to no in-context supervision. This also helps gain insight into how well language models capture the semantics of a wide range of downstream tasks purely from self-supervised pre-training on massive corpora of unlabeled text. Such models have naturally also been exposed to a lot of undesirable content like racist and sexist language and there is only some work on awareness of models along these dimensions. In this paper, we define and comprehensively evaluate how well such language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing. We define three broad classes of task descriptions for these tasks: statement, question, and completion, with numerous lexical variants within each class. We study the efficacy of prompting for each task using these classes and the null task description across several decoding methods and few-shot examples. Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation. We believe our work is an important step towards unbiased language models by quantifying the limits of current self-supervision objectives at accomplishing such sociologically challenging tasks.
Neural module networks (NMN) are a popular approach for grounding visual referring expressions. Prior implementations of NMN use pre-defined and fixed textual inputs in their module instantiation. This necessitates a large number of modules as they lack the ability to share weights and exploit associations between similar textual contexts (e.g. “dark cube on the left” vs. “black cube on the left”). In this work, we address these limitations and evaluate the impact of contextual clues in improving the performance of NMN models. First, we address the problem of fixed textual inputs by parameterizing the module arguments. This substantially reduce the number of modules in NMN by up to 75% without any loss in performance. Next we propose a method to contextualize our parameterized model to enhance the module’s capacity in exploiting the visiolinguistic associations. Our model outperforms the state-of-the-art NMN model on CLEVR-Ref+ dataset with +8.1% improvement in accuracy on the single-referent test set and +4.3% on the full test set. Additionally, we demonstrate that contextualization provides +11.2% and +1.7% improvements in accuracy over prior NMN models on CLOSURE and NLVR2. We further evaluate the impact of our contextualization by constructing a contrast set for CLEVR-Ref+, which we call CC-Ref+. We significantly outperform the baselines by as much as +10.4% absolute accuracy on CC-Ref+, illustrating the generalization skills of our approach.
Visual referring expression recognition is a challenging task that requires natural language understanding in the context of an image. We critically examine RefCOCOg, a standard benchmark for this task, using a human study and show that 83.7% of test instances do not require reasoning on linguistic structure, i.e., words are enough to identify the target object, the word order doesn’t matter. To measure the true progress of existing models, we split the test set into two sets, one which requires reasoning on linguistic structure and the other which doesn’t. Additionally, we create an out-of-distribution dataset Ref-Adv by asking crowdworkers to perturb in-domain examples such that the target object changes. Using these datasets, we empirically show that existing methods fail to exploit linguistic structure and are 12% to 23% lower in performance than the established progress for this task. We also propose two methods, one based on contrastive learning and the other based on multi-task learning, to increase the robustness of ViLBERT, the current state-of-the-art model for this task. Our datasets are publicly available at https://github.com/aws/aws-refcocog-adv.
Recent work has shown that pre-trained language models such as BERT improve robustness to spurious correlations in the dataset. Intrigued by these results, we find that the key to their success is generalization from a small amount of counterexamples where the spurious correlations do not hold. When such minority examples are scarce, pre-trained models perform as poorly as models trained from scratch. In the case of extreme minority, we propose to use multi-task learning (MTL) to improve generalization. Our experiments on natural language inference and paraphrase identification show that MTL with the right auxiliary tasks significantly improves performance on challenging examples without hurting the in-distribution performance. Further, we show that the gain from MTL mainly comes from improved generalization from the minority examples. Our results highlight the importance of data diversity for overcoming spurious correlations.1
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to “compress” text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Recent work has shown that visual context improves cross-lingual sense disambiguation for nouns. We extend this line of work to the more challenging task of cross-lingual verb sense disambiguation, introducing the MultiSense dataset of 9,504 images annotated with English, German, and Spanish verbs. Each image in MultiSense is annotated with an English verb and its translation in German or Spanish. We show that cross-lingual verb sense disambiguation models benefit from visual context, compared to unimodal baselines. We also show that the verb sense predicted by our best disambiguation model can improve the results of a text-only machine translation system when used for a multimodal translation task.
The text we see in social media suffers from lots of undesired characterstics like hatespeech, abusive language, insults etc. The nature of this text is also very different compared to the traditional text we see in news with lots of obfuscated words, intended typos. This poses several robustness challenges to many natural language processing (NLP) techniques developed for traditional text. Many techniques proposed in the recent times such as charecter encoding models, subword models, byte pair encoding to extract subwords can aid in dealing with few of these nuances. In our work, we analyze the effectiveness of each of the above techniques, compare and contrast various word decomposition techniques when used in combination with others. We experiment with recent advances of finetuning pretrained language models, and demonstrate their robustness to domain shift. We also show our approaches achieve state of the art performance on Wikipedia attack, toxicity datasets, and Twitter hatespeech dataset.
Recent research in language and vision has developed models for predicting and disambiguating verbs from images. Here, we ask whether the predictions made by such models correspond to human intuitions about visual verbs. We show that the image regions a verb prediction model identifies as salient for a given verb correlate with the regions fixated by human observers performing a verb classification task.
Video content on social media platforms constitutes a major part of the communication between people, as it allows everyone to share their stories. However, if someone is unable to consume video, either due to a disability or network bandwidth, this severely limits their participation and communication. Automatically telling the stories using multi-sentence descriptions of videos would allow bridging this gap. To learn and evaluate such models, we introduce VideoStory a new large-scale dataset for video description as a new challenge for multi-sentence video description. Our VideoStory captions dataset is complementary to prior work and contains 20k videos posted publicly on a social media platform amounting to 396 hours of video with 123k sentences, temporally aligned to the video.
In this paper we propose a model to learn multimodal multilingual representations for matching images and sentences in different languages, with the aim of advancing multilingual versions of image search and image understanding. Our model learns a common representation for images and their descriptions in two different languages (which need not be parallel) by considering the image as a pivot between two languages. We introduce a new pairwise ranking loss function which can handle both symmetric and asymmetric similarity between the two modalities. We evaluate our models on image-description ranking for German and English, and on semantic textual similarity of image descriptions in English. In both cases we achieve state-of-the-art performance.
A large amount of recent research has focused on tasks that combine language and vision, resulting in a proliferation of datasets and methods. One such task is action recognition, whose applications include image annotation, scene understanding and image retrieval. In this survey, we categorize the existing approaches based on how they conceptualize this problem and provide a detailed review of existing datasets, highlighting their diversity as well as advantages and disadvantages. We focus on recently developed datasets which link visual information with linguistic resources and provide a fine-grained syntactic and semantic analysis of actions in images.
In this paper we present the mapping between WordNet domains and WordNet topics, and the emergent Wikipedia categories. This mapping leads to a coarse alignment between WordNet and Wikipedia, useful for producing domain-specific and multilingual corpora. Multilinguality is achieved through the cross-language links between Wikipedia categories. Research in word-sense disambiguation has shown that within a specific domain, relevant words have restricted senses. The multilingual, and comparable, domain-specific corpora we produce have the potential to enhance research in word-sense disambiguation and terminology extraction in different languages, which could enhance the performance of various NLP tasks.