2023
pdf
abs
Prefix Propagation: Parameter-Efficient Tuning for Long Sequences
Jonathan Li
|
Will Aitken
|
Rohan Bhambhoria
|
Xiaodan Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Parameter-efficient tuning aims to mitigate the large memory requirements of adapting pretrained language models for downstream tasks. For example, one popular method, prefix-tuning, prepends trainable tokens to sequences while freezing the rest of the model’s parameters. Although such models attain comparable performance with fine-tuning when applied to sequences with short to moderate lengths, we show their inferior performance when modelling long sequences. To bridge this gap, we propose prefix-propagation, a simple but effective approach that conditions prefixes on previous hidden states. We empirically demonstrate that prefix-propagation outperforms prefix-tuning across long-document tasks, while using 50% fewer parameters. To further investigate the proposed architecture, we also show its advantage in calibration, and perform additional study on its relationship with kernel attention. To the best of our knowledge, this work is the first to focus on parameter-efficient learning for long-sequence language tasks.
pdf
abs
A Simple and Effective Framework for Strict Zero-Shot Hierarchical Classification
Rohan Bhambhoria
|
Lei Chen
|
Xiaodan Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
In recent years, large language models (LLMs) have achieved strong performance on benchmark tasks, especially in zero or few-shot settings. However, these benchmarks often do not adequately address the challenges posed in the real-world, such as that of hierarchical classification. In order to address this challenge, we propose refactoring conventional tasks on hierarchical datasets into a more indicative long-tail prediction task. We observe LLMs are more prone to failure in these cases. To address these limitations, we propose the use of entailment-contradiction prediction in conjunction with LLMs, which allows for strong performance in a strict zero-shot setting. Importantly, our method does not require any parameter updates, a resource-intensive process and achieves strong performance across multiple datasets.
pdf
abs
Prototype-Based Interpretability for Legal Citation Prediction
Chu Fei Luo
|
Rohan Bhambhoria
|
Samuel Dahan
|
Xiaodan Zhu
Findings of the Association for Computational Linguistics: ACL 2023
Deep learning has made significant progress in the past decade, and demonstrates potential to solve problems with extensive social impact. In high-stakes decision making areas such as law, experts often require interpretability for automatic systems to be utilized in practical settings. In this work, we attempt to address these requirements applied to the important problem of legal citation prediction (LCP). We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions. After initial experimental results, we refine the target citation predictions with the feedback of legal experts. Additionally, we introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers. Our study builds on and leverages the state-of-the-art language processing models for law, while addressing vital considerations for high-stakes tasks with practical societal impact.
pdf
abs
Legally Enforceable Hate Speech Detection for Public Forums
Chu Luo
|
Rohan Bhambhoria
|
Samuel Dahan
|
Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023
Hate speech causes widespread and deep-seated societal issues. Proper enforcement of hate speech laws is key for protecting groups of people against harmful and discriminatory language. However, determining what constitutes hate speech is a complex task that is highly open to subjective interpretations. Existing works do not align their systems with enforceable definitions of hate speech, which can make their outputs inconsistent with the goals of regulators. This research introduces a new perspective and task for enforceable hate speech detection centred around legal definitions, and a dataset annotated on violations of eleven possible definitions by legal experts. Given the challenge of identifying clear, legally enforceable instances of hate speech, we augment the dataset with expert-generated samples and an automatically mined challenge set. We experiment with grounding the model decision in these definitions using zero-shot and few-shot prompting. We then report results on several large language models (LLMs). With this task definition, automatic hate speech detection can be more closely aligned to enforceable laws, and hence assist in more rigorous enforcement of legal protections against harmful speech in public forums.
2022
pdf
abs
Parameter-Efficient Legal Domain Adaptation
Jonathan Li
|
Rohan Bhambhoria
|
Xiaodan Zhu
Proceedings of the Natural Legal Language Processing Workshop 2022
Seeking legal advice is often expensive. Recent advancements in machine learning for solving complex problems can be leveraged to help make legal services more accessible to the public. However, real-life applications encounter significant challenges. State-of-the-art language models are growing increasingly large, making parameter-efficient learning increasingly important. Unfortunately, parameter-efficient methods perform poorly with small amounts of data, which are common in the legal domain (where data labelling costs are high). To address these challenges, we propose parameter-efficient legal domain adaptation, which uses vast unsupervised legal data from public legal forums to perform legal pre-training. This method exceeds or matches the fewshot performance of existing models such as LEGAL-BERT on various legal tasks while tuning only approximately 0.1% of model parameters. Additionally, we show that our method can achieve calibration comparable to existing methods across several tasks. To the best of our knowledge, this work is among the first to explore parameter-efficient methods of tuning language models in the legal domain.
2020
pdf
abs
A Smart System to Generate and Validate Question Answer Pairs for COVID-19 Literature
Rohan Bhambhoria
|
Luna Feng
|
Dawn Sepehr
|
John Chen
|
Conner Cowling
|
Sedef Kocak
|
Elham Dolatabadi
Proceedings of the First Workshop on Scholarly Document Processing
Automatically generating question answer (QA) pairs from the rapidly growing coronavirus-related literature is of great value to the medical community. Creating high quality QA pairs would allow researchers to build models to address scientific queries for answers which are not readily available in support of the ongoing fight against the pandemic. QA pair generation is, however, a very tedious and time consuming task requiring domain expertise for annotation and evaluation. In this paper we present our contribution in addressing some of the challenges of building a QA system without gold data. We first present a method to create QA pairs from a large semi-structured dataset through the use of transformer and rule-based models. Next, we propose a means of engaging subject matter experts (SMEs) for annotating the QA pairs through the usage of a web application. Finally, we demonstrate some experiments showcasing the effectiveness of leveraging active learning in designing a high performing model with a substantially lower annotation effort from the domain experts.