Riccardo Orlando


2024

pdf
ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
Riccardo Orlando | Pere-Lluís Huguet Cabot | Edoardo Barba | Roberto Navigli
Findings of the Association for Computational Linguistics ACL 2024

Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural Language Processing, serving as critical components in a wide range of applications. In this paper, we propose ReLiK, a Retriever-Reader architecture for both EL and RE, where, given an input text, the Retriever module undertakes the identification of candidate entities or relations that could potentially appear within the text. Subsequently, the Reader module is tasked to discern the pertinent retrieved entities or relations and establish their alignment with the corresponding textual spans. Notably, we put forward an innovative input representation that incorporates the candidate entities or relations alongside the text, making it possible to link entities or extract relations in a single forward pass and to fully leverage pre-trained language models contextualization capabilities, in contrast with previous Retriever-Reader-based methods, which require a forward pass for each candidate. Our formulation of EL and RE achieves state-of-the-art performance in both in-domain and out-of-domain benchmarks while using academic budget training and with up to 40x inference speed compared to competitors. Finally, we show how our architecture can be used seamlessly for Information Extraction (cIE), i.e. EL + RE, and setting a new state of the art by employing a shared Reader that simultaneously extracts entities and relations.

pdf
MOSAICo: a Multilingual Open-text Semantically Annotated Interlinked Corpus
Simone Conia | Edoardo Barba | Abelardo Carlos Martinez Lorenzo | Pere-Lluís Huguet Cabot | Riccardo Orlando | Luigi Procopio | Roberto Navigli
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Several Natural Language Understanding (NLU) tasks focus on linking text to explicit knowledge, including Word Sense Disambiguation, Semantic Role Labeling, Semantic Parsing, and Relation Extraction. In addition to the importance of connecting raw text with explicit knowledge bases, the integration of such carefully curated knowledge into deep learning models has been shown to be beneficial across a diverse range of applications, including Language Modeling and Machine Translation. Nevertheless, the scarcity of semantically-annotated corpora across various tasks and languages limits the potential advantages significantly. To address this issue, we put forward MOSAICo, the first endeavor aimed at equipping the research community with the key ingredients to model explicit semantic knowledge at a large scale, providing hundreds of millions of silver yet high-quality annotations for four NLU tasks across five languages. We describe the creation process of MOSAICo, demonstrate its quality and variety, and analyze the interplay between different types of semantic information. MOSAICo, available at https://github.com/SapienzaNLP/mosaico, aims to drop the requirement of closed, licensed datasets and represents a step towards a level playing field across languages and tasks in NLU.

2023

pdf
Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities
Riccardo Orlando | Simone Conia | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2023

Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings – newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from “solved”, and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates. We release our software and datasets at https://github.com/sapienzanlp/exploring-srl.

2022

pdf
Universal Semantic Annotator: the First Unified API for WSD, SRL and Semantic Parsing
Riccardo Orlando | Simone Conia | Stefano Faralli | Roberto Navigli
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper, we present the Universal Semantic Annotator (USeA), which offers the first unified API for high-quality automatic annotations of texts in 100 languages through state-of-the-art systems for Word Sense Disambiguation, Semantic Role Labeling and Semantic Parsing. Together, such annotations can be used to provide users with rich and diverse semantic information, help second-language learners, and allow researchers to integrate explicit semantic knowledge into downstream tasks and real-world applications.

2021

pdf
AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambiguation
Riccardo Orlando | Simone Conia | Fabrizio Brignone | Francesco Cecconi | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Over the past few years, Word Sense Disambiguation (WSD) has received renewed interest: recently proposed systems have shown the remarkable effectiveness of deep learning techniques in this task, especially when aided by modern pretrained language models. Unfortunately, such systems are still not available as ready-to-use end-to-end packages, making it difficult for researchers to take advantage of their performance. The only alternative for a user interested in applying WSD to downstream tasks is to rely on currently available end-to-end WSD systems, which, however, still rely on graph-based heuristics or non-neural machine learning algorithms. In this paper, we fill this gap and propose AMuSE-WSD, the first end-to-end system to offer high-quality sense information in 40 languages through a state-of-the-art neural model for WSD. We hope that AMuSE-WSD will provide a stepping stone for the integration of meaning into real-world applications and encourage further studies in lexical semantics. AMuSE-WSD is available online at http://nlp.uniroma1.it/amuse-wsd.

pdf
InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles
Simone Conia | Riccardo Orlando | Fabrizio Brignone | Francesco Cecconi | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Notwithstanding the growing interest in cross-lingual techniques for Natural Language Processing, there has been a surprisingly small number of efforts aimed at the development of easy-to-use tools for cross-lingual Semantic Role Labeling. In this paper, we fill this gap and present InVeRo-XL, an off-the-shelf state-of-the-art system capable of annotating text with predicate sense and semantic role labels from 7 predicate-argument structure inventories in more than 40 languages. We hope that our system – with its easy-to-use RESTful API and Web interface – will become a valuable tool for the research community, encouraging the integration of sentence-level semantics into cross-lingual downstream tasks. InVeRo-XL is available online at http://nlp.uniroma1.it/invero.