Most earlier work on text summarization is carried out on news article datasets. The summary in these datasets is naturally located at the beginning of the text. Hence, a model can spuriously utilize this correlation for summary generation instead of truly learning to summarize. To address this issue, we constructed a new dataset, SumPubMed , using scientific articles from the PubMed archive. We conducted a human analysis of summary coverage, redundancy, readability, coherence, and informativeness on SumPubMed . SumPubMed is challenging because (a) the summary is distributed throughout the text (not-localized on top), and (b) it contains rare domain-specific scientific terms. We observe that seq2seq models that adequately summarize news articles struggle to summarize SumPubMed . Thus, SumPubMed opens new avenues for the future improvement of models as well as the development of new evaluation metrics.
User-generated contents’ score-based prediction and item recommendation has become an inseparable part of the online recommendation systems. The ratings allow people to express their opinions and may affect the market value of items and consumer confidence in e-commerce decisions. A major problem with the models designed for user review prediction is that they unknowingly neglect the rating bias occurring due to personal user bias preferences. We propose a tendency-based approach that models the user and item tendency for score prediction along with text review analysis with respect to ratings.
In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.