This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Generating factual responses is a crucial requirement for dialogue systems. To promotemore factual responses, a common strategyis to ground their responses in relevant documents that inform response generation. However, common dialogue models still often hallucinate information that was not containedin these documents and is therefore unfaithful. In this work, we propose to alleviate suchhallucinations by ‘subtracting’ the parametersof a model trained to hallucinate from a dialogue response generation model in order to‘negate’ the contribution of such hallucinatedexamples from it. Extensive automatic and human evaluation shows favourable results whencompared to state-of-the-art methods that combine the distributions of multiple models, suchas DExperts (Liu et al., 2021), and others thatchange the training procedure, such as Quark(Lu et al., 2022a). Finally, we show how wecan not only reduce hallucinations but also discourage extractive responses, which are oftena consequence of reducing hallucinations byencouraging copy-pasting of document spans.We publicly release our code for reproducibilityand facilitating further research.
Lexical matching remains the de facto evaluation method for open-domain question answering (QA). Unfortunately, lexical matching fails completely when a plausible candidate answer does not appear in the list of gold answers, which is increasingly the case as we shift from extractive to generative models. The recent success of large language models (LLMs) for QA aggravates lexical matching failures since candidate answers become longer, thereby making matching with the gold answers even more challenging. Without accurate evaluation, the true progress in open-domain QA remains unknown. In this paper, we conduct a thorough analysis of various open-domain QA models, including LLMs, by manually evaluating their answers on a subset of NQ-open, a popular benchmark. Our assessments reveal that while the true performance of all models is significantly underestimated, the performance of the InstructGPT (zero-shot) LLM increases by nearly +60%, making it on par with existing top models, and the InstructGPT (few-shot) model actually achieves a new state-of-the-art on NQ-open. We also find that more than 50% of lexical matching failures are attributed to semantically equivalent answers. We further demonstrate that regex matching ranks QA models consistent with human judgments, although still suffering from unnecessary strictness. Finally, we demonstrate that automated evaluation models are a reasonable surrogate for lexical matching in some circumstances, but not for long-form answers generated by LLMs. The automated models struggle in detecting hallucinations in LLM answers and are thus unable to evaluate LLMs. At this time, there appears to be no substitute for human evaluation.
Moral or ethical judgments rely heavily on the specific contexts in which they occur. Understanding varying shades of defeasible contextualizations (i.e., additional information that strengthens or attenuates the moral acceptability of an action) is critical to accurately represent the subtlety and intricacy of grounded human moral judgment in real-life scenarios. We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable, along with commonsense rationales that justify the reasoning. To elicit high-quality task data, we take an iterative self-distillation approach that starts from a small amount of unstructured seed knowledge from GPT-3 and then alternates between (1) self-distillation from student models; (2) targeted filtering with a critic model trained by human judgment (to boost validity) and NLI (to boost diversity); (3) self-imitation learning (to amplify the desired data quality). This process yields a student model that produces defeasible contexts with improved validity, diversity, and defeasibility. From this model we distill a high-quality dataset, 𝛿-Rules-of-Thumb, of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions rated highly by human annotators 85.9% to 99.8% of the time. Using 𝛿-RoT we obtain a final student model that wins over all intermediate student models by a notable margin.
While extreme-scale language models have demonstrated exceptional performance on a variety of language tasks, the degree of control over these language models through pure prompting can often be limited. Directly fine-tuning such language models can be effective for tailoring them, but it can be either extremely costly (e.g., GPT-3) or not even feasible for the broader community (e.g., GPT-4). We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model such as GPT-3 without fine-tuning it. IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective with reinforcement learning. On five challenging text generation tasks, such as toxicity reduction and lexically constrained generation, IPA consistently brings significant improvements over off-the-shelf language models. It outperforms competitive baseline methods, sometimes even including expensive fine-tuning. In particular, tailoring GPT-2 with IPA can outperform GPT-3, while tailoring GPT-3 with IPA brings a major performance boost over GPT-3 (and sometimes even over GPT-4). Our promising results highlight the potential of IPA as a lightweight alternative to tailoring extreme-scale language models.
Knowledge-grounded conversational models are known to suffer from producing factually invalid statements, a phenomenon commonly called hallucination. In this work, we investigate the underlying causes of this phenomenon: is hallucination due to the training data, or to the models? We conduct a comprehensive human study on both existing knowledge-grounded conversational benchmarks and several state-of-the-art models. Our study reveals that the standard benchmarks consist of > 60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations. Our findings raise important questions on the quality of existing datasets and models trained using them. We make our annotations publicly available for future research.
Knowledge-grounded dialogue systems powered by large language models often generate responses that, while fluent, are not attributable to a relevant source of information. Progress towards models that do not exhibit this issue requires evaluation metrics that can quantify its prevalence. To this end, we introduce the Benchmark for Evaluation of Grounded INteraction (Begin), comprising 12k dialogue turns generated by neural dialogue systems trained on three knowledge-grounded dialogue corpora. We collect human annotations assessing the extent to which the models’ responses can be attributed to the given background information. We then use Begin to analyze eight evaluation metrics. We find that these metrics rely on spurious correlations, do not reliably distinguish attributable abstractive responses from unattributable ones, and perform substantially worse when the knowledge source is longer. Our findings underscore the need for more sophisticated and robust evaluation metrics for knowledge-grounded dialogue. We make Begin publicly available at https://github.com/google/BEGIN-dataset.
The goal of information-seeking dialogue is to respond to seeker queries with natural language utterances that are grounded on knowledge sources. However, dialogue systems often produce unsupported utterances, a phenomenon known as hallucination. To mitigate this behavior, we adopt a data-centric solution and create FaithDial, a new benchmark for hallucination-free dialogues, by editing hallucinated responses in the Wizard of Wikipedia (WoW) benchmark. We observe that FaithDial is more faithful than WoW while also maintaining engaging conversations. We show that FaithDial can serve as training signal for: i) a hallucination critic, which discriminates whether an utterance is faithful or not, and boosts the performance by 12.8 F1 score on the BEGIN benchmark compared to existing datasets for dialogue coherence; ii) high-quality dialogue generation. We benchmark a series of state-of-the-art models and propose an auxiliary contrastive objective that achieves the highest level of faithfulness and abstractiveness based on several automated metrics. Further, we find that the benefits of FaithDial generalize to zero-shot transfer on other datasets, such as CMU-Dog and TopicalChat. Finally, human evaluation reveals that responses generated by models trained on FaithDial are perceived as more interpretable, cooperative, and engaging.
Dialogue systems powered by large pre-trained language models exhibit an innate ability to deliver fluent and natural-sounding responses. Despite their impressive performance, these models are fitful and can often generate factually incorrect statements impeding their widespread adoption. In this paper, we focus on the task of improving faithfulness and reducing hallucination of neural dialogue systems to known facts supplied by a Knowledge Graph (KG). We propose Neural Path Hunter which follows a generate-then-refine strategy whereby a generated response is amended using the KG. Neural Path Hunter leverages a separate token-level fact critic to identify plausible sources of hallucination followed by a refinement stage that retrieves correct entities by crafting a query signal that is propagated over a k-hop subgraph. We empirically validate our proposed approach on the OpenDialKG dataset (Moon et al., 2019) against a suite of metrics and report a relative improvement of faithfulness over dialogue responses by 20.35% based on FeQA (Durmus et al., 2020). The code is available at https://github.com/nouhadziri/Neural-Path-Hunter.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses.
Evaluating open-domain dialogue systems is difficult due to the diversity of possible correct answers. Automatic metrics such as BLEU correlate weakly with human annotations, resulting in a significant bias across different models and datasets. Some researchers resort to human judgment experimentation for assessing response quality, which is expensive, time consuming, and not scalable. Moreover, judges tend to evaluate a small number of dialogues, meaning that minor differences in evaluation configuration may lead to dissimilar results. In this paper, we present interpretable metrics for evaluating topic coherence by making use of distributed sentence representations. Furthermore, we introduce calculable approximations of human judgment based on conversational coherence by adopting state-of-the-art entailment techniques. Results show that our metrics can be used as a surrogate for human judgment, making it easy to evaluate dialogue systems on large-scale datasets and allowing an unbiased estimate for the quality of the responses. This paper has been accepted in NAACL 2019.
Sequence-to-Sequence (Seq2Seq) models have witnessed a notable success in generating natural conversational exchanges. Notwithstanding the syntactically well-formed responses generated by these neural network models, they are prone to be acontextual, short and generic. In this work, we introduce a Topical Hierarchical Recurrent Encoder Decoder (THRED), a novel, fully data-driven, multi-turn response generation system intended to produce contextual and topic-aware responses. Our model is built upon the basic Seq2Seq model by augmenting it with a hierarchical joint attention mechanism that incorporates topical concepts and previous interactions into the response generation. To train our model, we provide a clean and high-quality conversational dataset mined from Reddit comments. We evaluate THRED on two novel automated metrics, dubbed Semantic Similarity and Response Echo Index, as well as with human evaluation. Our experiments demonstrate that the proposed model is able to generate more diverse and contextually relevant responses compared to the strong baselines.
Despite myriad efforts in the literature designing neural dialogue generation systems in recent years, very few consider putting restrictions on the response itself. They learn from collections of past responses and generate one based on a given utterance without considering, speech act, desired style or emotion to be expressed. In this research, we address the problem of forcing the dialogue generation to express emotion. We present three models that either concatenate the desired emotion with the source input during the learning, or push the emotion in the decoder. The results, evaluated with an emotion tagger, are encouraging with all three models, but present better outcome and promise with our model that adds the emotion vector in the decoder.