2024
pdf
abs
Generating Faithful and Salient Text from Multimodal Data
Tahsina Hashem
|
Weiqing Wang
|
Derry Tanti Wijaya
|
Mohammed Eunus Ali
|
Yuan-Fang Li
Proceedings of the 17th International Natural Language Generation Conference
While large multimodal models (LMMs) have obtained strong performance on many multimodal tasks, they may still hallucinate while generating text. Their performance on detecting salient features from visual data is also unclear. In this paper, we develop a framework to generate faithful and salient text from mixed-modal data, which includes images and structured data ( represented in knowledge graphs or tables). Specifically, we train a vision critic model to identify hallucinated and non-salient features from the image modality. The critic model also generates a list of salient image features. This information is used in the post editing step to improve the generation quality. Experiments on two datasets show that our framework improves LMMs’ generation quality on both faithfulness and saliency, outperforming recent techniques aimed at reducing hallucination. The dataset and code are available at https://github.com/TahsinaHashem/FaithD2T.
pdf
abs
MapCoder: Multi-Agent Code Generation for Competitive Problem Solving
Md. Ashraful Islam
|
Mohammed Eunus Ali
|
Md Rizwan Parvez
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Code synthesis, which requires a deep understanding of complex natural language (NL) problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. Thus, while large language models (LLMs) demonstrate impressive proficiency in natural language processing (NLP), their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging the multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLMs ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks—MapCoder showcases remarkable code generation capabilities, achieving their new state-of-the-art (pass@1) results—(HumanEval 93.9%, MBPP 83.1%, APPS 22.0%, CodeContests 28.5%, and xCodeEval 45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.
2023
pdf
bib
abs
BSpell: A CNN-Blended BERT Based Bangla Spell Checker
Chowdhury Rahman
|
MD.Hasibur Rahman
|
Samiha Zakir
|
Mohammad Rafsan
|
Mohammed Eunus Ali
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
Bangla typing is mostly performed using English keyboard and can be highly erroneous due to the presence of compound and similarly pronounced letters. Spelling correction of a misspelled word requires understanding of word typing pattern as well as the context of the word usage. A specialized BERT model named BSpell has been proposed in this paper targeted towards word for word correction in sentence level. BSpell contains an end-to-end trainable CNN sub-model named SemanticNet along with specialized auxiliary loss. This allows BSpell to specialize in highly inflected Bangla vocabulary in the presence of spelling errors. Furthermore, a hybrid pretraining scheme has been proposed for BSpell that combines word level and character level masking. Comparison on two Bangla and one Hindi spelling correction dataset shows the superiority of our proposed approach.
pdf
abs
Generating Faithful Text From a Knowledge Graph with Noisy Reference Text
Tahsina Hashem
|
Weiqing Wang
|
Derry Tanti Wijaya
|
Mohammed Eunus Ali
|
Yuan-Fang Li
Proceedings of the 16th International Natural Language Generation Conference
Knowledge Graph (KG)-to-Text generation aims at generating fluent natural-language text that accurately represents the information of a given knowledge graph. While significant progress has been made in this task by exploiting the power of pre-trained language models (PLMs) with appropriate graph structure-aware modules, existing models still fall short of generating faithful text, especially when the ground-truth natural-language text contains additional information that is not present in the graph. In this paper, we develop a KG-to-text generation model that can generate faithful natural-language text from a given graph, in the presence of noisy reference text. Our framework incorporates two core ideas: Firstly, we utilize contrastive learning to enhance the model’s ability to differentiate between faithful and hallucinated information in the text, thereby encouraging the decoder to generate text that aligns with the input graph. Secondly, we empower the decoder to control the level of hallucination in the generated text by employing a controllable text generation technique. We evaluate our model’s performance through the standard quantitative metrics as well as a ChatGPT-based quantitative and qualitative analysis. Our evaluation demonstrates the superior performance of our model over state-of-the-art KG-to-text models on faithfulness.
2022
pdf
abs
CNN for Modeling Sanskrit Originated Bengali and Hindi Language
Chowdhury Rahman
|
MD. Hasibur Rahman
|
Mohammad Rafsan
|
Mohammed Eunus Ali
|
Samiha Zakir
|
Rafsanjani Muhammod
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Though recent works have focused on modeling high resource languages, the area is still unexplored for low resource languages like Bengali and Hindi. We propose an end to end trainable memory efficient CNN architecture named CoCNN to handle specific characteristics such as high inflection, morphological richness, flexible word order and phonetical spelling errors of Bengali and Hindi. In particular, we introduce two learnable convolutional sub-models at word and at sentence level that are end to end trainable. We show that state-of-the-art (SOTA) Transformer models including pretrained BERT do not necessarily yield the best performance for Bengali and Hindi. CoCNN outperforms pretrained BERT with 16X less parameters and achieves much better performance than SOTA LSTMs on multiple real-world datasets. This is the first study on the effectiveness of different architectures from Convolution, Recurrent, and Transformer neural net paradigm for modeling Bengali and Hindi.