This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Automatic text simplification (TS) aims to automate the process of rewriting text to make it easier for people to read. A pre-requisite for TS to be useful is that it should convey information that is consistent with the meaning of the original text. However, current TS evaluation protocols assess system outputs for simplicity and meaning preservation without regard for the document context in which output sentences occur and for how people understand them. In this work, we introduce a human evaluation framework to assess whether simplified texts preserve meaning using reading comprehension questions. With this framework, we conduct a thorough human evaluation of texts by humans and by nine automatic systems. Supervised systems that leverage pre-training knowledge achieve the highest scores on the reading comprehension tasks among the automatic controllable TS systems. However, even the best-performing supervised system struggles with at least 14% of the questions, marking them as “unanswerable” based on simplified content. We further investigate how existing TS evaluation metrics and automatic question-answering systems approximate the human judgments we obtained.
Machine Translation (MT) remains one of the last NLP tasks where large language models (LLMs) have not yet replaced dedicated supervised systems. This work exploits the complementary strengths of LLMs and supervised MT by guiding LLMs to automatically post-edit MT with external feedback on its quality, derived from Multidimensional Quality Metric (MQM) annotations. Working with LLaMA-2 models, we consider prompting strategies varying the nature of feedback provided and then fine-tune the LLM to improve its ability to exploit the provided guidance. Through experiments on Chinese-English, English-German, and English-Russian MQM data, we demonstrate that prompting LLMs to post-edit MT improves TER, BLEU and COMET scores, although the benefits of fine-grained feedback are not clear. Fine-tuning helps integrate fine-grained feedback more effectively and further improves translation quality based on both automatic and human evaluation.
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
Authorship obfuscation techniques hold the promise of helping people protect their privacy in online communications by automatically rewriting text to hide the identity of the original author. However, obfuscation has been evaluated in narrow settings in the NLP literature and has primarily been addressed with superficial edit operations that can lead to unnatural outputs. In this work, we introduce an automatic text privatization framework that fine-tunes a large language model via reinforcement learning to produce rewrites that balance soundness, sense, and privacy. We evaluate it extensively on a large-scale test set of English Reddit posts by 68k authors composed of short-medium length texts. We study how the performance changes among evaluative conditions including authorial profile length and authorship detection strategy. Our method maintains high text quality according to both automated metrics and human evaluation, and successfully evades several automated authorship attacks.
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is only available in limited amounts and for fewer languages than audio-only resources.To address this gap, we present XLAVS-R, a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation in over 100 languages. It is designed to maximize the benefits of limited multilingual AV pre-training data, by building on top of audio-only multilingual pre-training and simplifying existing pre-training schemes. Extensive evaluation on the MuAViC benchmark shows the strength of XLAVS-R on downstream audio-visual speech recognition and translation tasks, where it outperforms the previous state of the art by up to 18.5% WER and 4.7 BLEU given noisy AV inputs, and enables strong zero-shot audio-visual ability with audio-only fine-tuning.
As the quality of AI-generated text increases with the development of new Large Language Models, people use them to write in a variety of contexts. Human-AI collaborative writing poses a potential challenge for existing AI analysis techniques, which have been primarily tested either on human-written text only, or on samples independently generated by humans and AI. In this work, we investigate the extent to which existing AI detection and authorship analysis models can perform classification on data generated in human-AI collaborative writing sessions. Results show that, for AI text detection in the cowriting setting, classifiers based on authorship embeddings (Rivera-Soto et al., 2021) outperform classifiers used in prior work distinguishing AI vs. human text generated independently. However, these embeddings are not optimal for finer-grained authorship identification tasks: for authorship verification, n-gram based models are more robust to human-AI co-written text, and authorship attribution performance degrades compared to baselines that use human-written text only. Taken together, this suggests that the rise of human-AI co-written text will require adapting AI detection tools and authorship analysis techniques in the near future. We release our code at https://github.com/AARichburg/Human-AI_Authorship_Analysis.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
NLP systems have shown impressive performance at answering questions by retrieving relevant context. However, with the increasingly large models, it is impossible and often undesirable to constrain models’ knowledge or reasoning to only the retrieved context. This leads to a mismatch between the information that the models access to derive the answer and the information that is available to the user to assess the model predicted answer. In this work, we study how users interact with QA systems in the absence of sufficient information to assess their predictions. Further, we ask whether adding the requisite background helps mitigate users’ over-reliance on predictions. Our study reveals that users rely on model predictions even in the absence of sufficient information needed to assess the model’s correctness. Providing the relevant background, however, helps users better catch model errors, reducing over-reliance on incorrect predictions. On the flip side, background information also increases users’ confidence in their accurate as well as inaccurate judgments. Our work highlights that supporting users’ verification of QA predictions is an important, yet challenging, problem.
We ask the question: Are there widespread disparities in machine translations of names across race/ethnicity, and gender? We hypothesize that the translation quality of names and surrounding context will be lower for names associated with US racial and ethnic minorities due to these systems’ tendencies to standardize language to predominant language patterns. We develop a dataset of names that are strongly demographically aligned and propose a translation evaluation procedure based on round-trip translation. We analyze the effect of name demographics on translation quality using generalized linear mixed effects models and find that the ability of translation systems to correctly translate female-associated names is significantly lower than male-associated names. This effect is particularly pronounced for female-associated names that are also associated with racial (Black) and ethnic (Hispanic) minorities. This disparity in translation quality between social groups for something as personal as someone’s name has significant implications for people’s professional, personal, and cultural identities, self-worth and ease of communication. Our findings suggest that more MT research is needed to improve the translation of names and to provide high-quality service for users regardless of gender, race, and ethnicity.
Recent research at the intersection of AI explainability and fairness has focused on how explanations can improve human-plus-AI task performance as assessed by fairness measures. We propose to characterize what constitutes an explanation that is itself “fair” – an explanation that does not adversely impact specific populations. We formulate a novel evaluation method of “fair explanations” using not just accuracy and label time, but also psychological impact of explanations on different user groups across many metrics (mental discomfort, stereotype activation, and perceived workload). We apply this method in the context of content moderation of potential hate speech, and its differential impact on Asian vs. non-Asian proxy moderators, across explanation approaches (saliency map and counterfactual explanation). We find that saliency maps generally perform better and show less evidence of disparate impact (group) and individual unfairness than counterfactual explanations. Content warning: This paper contains examples of hate speech and racially discriminatory language. The authors do not support such content. Please consider your risk of discomfort carefully before continuing reading!
Translations help people understand content written in another language. However, even correct literal translations do not fulfill that goal when people lack the necessary background to understand them. Professional translators incorporate explicitations to explain the missing context by considering cultural differences between source and target audiences. Despite its potential to help users, NLP research on explicitation is limited because of the dearth of adequate evaluation methods. This work introduces techniques for automatically generating explicitations, motivated by WikiExpl: a dataset that we collect from Wikipedia and annotate with human translators. The resulting explicitations are useful as they help answer questions more accurately in a multilingual question answering framework.
Explainable NLP techniques primarily explain by answering “Which tokens in the input are responsible for this prediction?”. We argue that for NLP models that make predictions by comparing two input texts, it is more useful to explain by answering “What differences between the two inputs explain this prediction?”. We introduce a technique to generate contrastive phrasal highlights that explain the predictions of a semantic divergence model via phrase alignment guided erasure. We show that the resulting highlights match human rationales of cross-lingual semantic differences better than popular post-hoc saliency techniques and that they successfully help people detect fine-grained meaning differences in human translations and critical machine translation errors.
A major challenge in the practical use of Machine Translation (MT) is that users lack information on translation quality to make informed decisions about how to rely on outputs. Progress in quality estimation research provides techniques to automatically assess MT quality, but these techniques have primarily been evaluated in vitro by comparison against human judgments outside of a specific context of use. This paper evaluates quality estimation feedback in vivo with a human study in realistic high-stakes medical settings. Using Emergency Department discharge instructions, we study how interventions based on quality estimation versus backtranslation assist physicians in deciding whether to show MT outputs to a patient. We find that quality estimation improves appropriate reliance on MT, but backtranslation helps physicians detect more clinically harmful errors that QE alone often misses.
Text simplification systems rewrite text to make it more readable while preserving its content. However, what makes a text easy to read depends on the intended readers. Recent work has shown that pre-trained language models can simplify text using a wealth of techniques to control output simplicity, ranging from specifying only the desired reading grade level, to directly specifying low-level edit operations. Yet it remains unclear how to set these control parameters in practice. Existing approaches set them at the corpus level, disregarding the complexity of individual inputs and considering only one level of output complexity. In this work, we conduct an empirical study to understand how different control mechanisms impact the adequacy and simplicity of text simplification systems. Based on these insights, we introduce a simple method that predicts the edit operations required for simplifying a text for a specific grade level on an instance-per-instance basis. This approach improves the quality of the simplified outputs over corpus-level search-based heuristics.
Neural sequence generation models are known to “hallucinate”, by producing outputs that are unrelated to the source text. These hallucinations are potentially harmful, yet it remains unclear in what conditions they arise and how to mitigate their impact. In this work, we first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations. We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector which outperforms both model-free baselines and strong classifiers based on quality estimation or large pre-trained models on manually annotated English-Chinese and German-English translation test beds.
This paper provides an overview of the first shared task on choosing beneficial instances for machine translation, conducted as part of the CoCo4MT 2023 Workshop at MTSummit. This shared task was motivated by the need to make the data annotation process for machine translation more efficient, particularly for low-resource languages for which collecting human translations may be difficult or expensive. The task involved developing methods for selecting the most beneficial instances for training a machine translation system without access to an existing parallel dataset in the target language, such that the best selected instances can then be manually translated. Two teams participated in the shared task, namely the Williams team and the AST team. Submissions were evaluated by training a machine translation model on each submission’s chosen instances, and comparing their performance with the chRF++ score. The system that ranked first is by the Williams team, that finds representative instances by clustering the training data.
Synthetic translations have been used for a wide range of NLP tasks primarily as a means of data augmentation. This work explores, instead, how synthetic translations can be used to revise potentially imperfect reference translations in mined bitext. We find that synthetic samples can improve bitext quality without any additional bilingual supervision when they replace the originals based on a semantic equivalence classifier that helps mitigate NMT noise. The improved quality of the revised bitext is confirmed intrinsically via human evaluation and extrinsically through bilingual induction and MT tasks.
We propose a framework for training non-autoregressive sequence-to-sequence models for editing tasks, where the original input sequence is iteratively edited to produce the output. We show that the imitation learning algorithms designed to train such models for machine translation introduces mismatches between training and inference that lead to undertraining and poor generalization in editing scenarios. We address this issue with two complementary strategies: 1) a roll-in policy that exposes the model to intermediate training sequences that it is more likely to encounter during inference, 2) a curriculum that presents easy-to-learn edit operations first, gradually increasing the difficulty of training samples as the model becomes competent. We show the efficacy of these strategies on two challenging English editing tasks: controllable text simplification and abstractive summarization. Our approach significantly improves output quality on both tasks and controls output complexity better on the simplification task.
In this talk I will present a proposed user study to measure the impact of potentially misleading MT output on MT-enabled scanning of foreign language text by intelligence analysts (IAs) and the effectiveness of a practical intervention: providing output from more than one NMT system to the user. The focus of the talk will be on the approach to de-signing the user study to resemble scanning tasks in a measurable way with unclassified documents.
Detractors of neural machine translation admit that while its translations are fluent, it sometimes gets key facts wrong. This is particularly important in simultaneous interpretation where translations have to be provided as fast as possible: before a sentence is complete. Yet, evaluations of simultaneous machine translation (SimulMT) fail to capture if systems correctly translate the most salient elements of a question: people, places, and dates. To address this problem, we introduce a downstream word-by-word question answering evaluation task (SimQA): given a source language question, translate the question word by word into the target language, and answer as soon as possible. SimQA jointly measures whether the SimulMT models translate the question quickly and accurately, and can reveal shortcomings in existing neural systems—hallucinating or omitting facts.
While collecting or generating more parallel data is necessary to improve machine translation (MT) in low-resource settings, we lack an understanding of how the limited amounts of existing data are actually used to help guide the collection of further resources. In this paper, we apply data cartography techniques (Swayamdipta et al., 2020) to characterize the contribution of training samples in two low-resource MT tasks (Swahili-English and Turkish-English) throughout the training of standard neural MT models. Our empirical study shows that, unlike in prior work for classification tasks, most samples contribute to model training in low-resource MT, albeit not uniformly throughout the training process. Furthermore, uni-dimensional characterizations of samples – e.g., based on dual cross-entropy or word frequency – do not suffice to characterize to what degree they are hard or easy to learn. Taken together, our results suggest that data augmentation strategies for low-resource MT would benefit from model-in-the-loop strategies to maximize improvements.
This paper describes submission to the WMT 2022 Quality Estimation shared task (Task 1: sentence-level quality prediction). We follow a simple and intuitive approach, which consists of estimating MT quality by automatically back-translating hypotheses into the source language using a multilingual MT system. We then compare the resulting backtranslation with the original source using standard MT evaluation metrics. We find that even the best-performing backtranslation-based scores perform substantially worse than supervised QE systems, including the organizers’ baseline. However, combining backtranslation-based metrics with off-the-shelf QE scorers improves correlation with human judgments, suggesting that they can indeed complement a supervised QE system.
This paper describes the University of Maryland’s submission to the Special Task on Formality Control for Spoken Language Translation at IWSLT, which evaluates translation from English into 6 languages with diverse grammatical formality markers. We investigate to what extent this problem can be addressed with a single multilingual model, simultaneously controlling its output for target language and formality. Results show that this strategy can approach the translation quality and formality control achieved by dedicated translation models. However, the nature of the underlying pre-trained language model and of the finetuning samples greatly impact results.
Query-focused summaries of foreign-language, retrieved documents can help a user understand whether a document is actually relevant to the query term. A standard approach to this problem is to first translate the source documents and then perform extractive summarization to find relevant snippets. However, in a cross-lingual setting, the query term does not necessarily appear in the translations of relevant documents. In this work, we show that constrained machine translation and constrained post-editing can improve human relevance judgments by including a query term in a summary when its translation appears in the source document. We also present several strategies for selecting only certain documents for regeneration which yield further improvements
While it has been shown that Neural Machine Translation (NMT) is highly sensitive to noisy parallel training samples, prior work treats all types of mismatches between source and target as noise. As a result, it remains unclear how samples that are mostly equivalent but contain a small number of semantically divergent tokens impact NMT training. To close this gap, we analyze the impact of different types of fine-grained semantic divergences on Transformer models. We show that models trained on synthetic divergences output degenerated text more frequently and are less confident in their predictions. Based on these findings, we introduce a divergent-aware NMT framework that uses factors to help NMT recover from the degradation caused by naturally occurring divergences, improving both translation quality and model calibration on EN-FR tasks.
We introduce an Edit-Based TransfOrmer with Repositioning (EDITOR), which makes sequence generation flexible by seamlessly allowing users to specify preferences in output lexical choice. Building on recent models for non-autoregressive sequence generation (Gu et al., 2019), EDITOR generates new sequences by iteratively editing hypotheses. It relies on a novel reposition operation designed to disentangle lexical choice from word positioning decisions, while enabling efficient oracles for imitation learning and parallel edits at decoding time. Empirically, EDITOR uses soft lexical constraints more effectively than the Levenshtein Transformer (Gu et al., 2019) while speeding up decoding dramatically compared to constrained beam search (Post and Vilar, 2018). EDITOR also achieves comparable or better translation quality with faster decoding speed than the Levenshtein Transformer on standard Romanian-English, English-German, and English-Japanese machine translation tasks.
This paper describes the UMD submission to the Explainable Quality Estimation Shared Task at the EMNLP 2021 Workshop on “Evaluation & Comparison of NLP Systems”. We participated in the word-level and sentence-level MT Quality Estimation (QE) constrained tasks for all language pairs: Estonian-English, Romanian-English, German-Chinese, and Russian-German. Our approach combines the predictions of a word-level explainer model on top of a sentence-level QE model and a sequence labeler trained on synthetic data. These models are based on pre-trained multilingual language models and do not require any word-level annotations for training, making them well suited to zero-shot settings. Our best-performing system improves over the best baseline across all metrics and language pairs, with an average gain of 0.1 in AUC, Average Precision, and Recall at Top-K score.
This paper reviews and summarizes human evaluation practices described in 97 style transfer papers with respect to three main evaluation aspects: style transfer, meaning preservation, and fluency. In principle, evaluations by human raters should be the most reliable. However, in style transfer papers, we find that protocols for human evaluations are often underspecified and not standardized, which hampers the reproducibility of research in this field and progress toward better human and automatic evaluation methods.
This paper describes the system submitted to Large-Scale Multilingual Shared Task (Small Task #2) at WMT 2021. It is based on the massively multilingual open-source model FLORES101_MM100 model, with selective fine-tuning. Our best-performing system reported a 15.72 average BLEU score for the task.
While the field of style transfer (ST) has been growing rapidly, it has been hampered by a lack of standardized practices for automatic evaluation. In this paper, we evaluate leading automatic metrics on the oft-researched task of formality style transfer. Unlike previous evaluations, which focus solely on English, we expand our focus to Brazilian-Portuguese, French, and Italian, making this work the first multilingual evaluation of metrics in ST. We outline best practices for automatic evaluation in (formality) style transfer and identify several models that correlate well with human judgments and are robust across languages. We hope that this work will help accelerate development in ST, where human evaluation is often challenging to collect.
Current approaches to incorporating terminology constraints in machine translation (MT) typically assume that the constraint terms are provided in their correct morphological forms. This limits their application to real-world scenarios where constraint terms are provided as lemmas. In this paper, we introduce a modular framework for incorporating lemma constraints in neural MT (NMT) in which linguistic knowledge and diverse types of NMT models can be flexibly applied. It is based on a novel cross-lingual inflection module that inflects the target lemma constraints based on the source context. We explore linguistically motivated rule-based and data-driven neural-based inflection modules and design English-German health and English-Lithuanian news test suites to evaluate them in domain adaptation and low-resource MT settings. Results show that our rule-based inflection module helps NMT models incorporate lemma constraints more accurately than a neural module and outperforms the existing end-to-end approach with lower training costs.
Successful Machine Translation (MT) deployment requires understanding not only the intrinsic qualities of MT output, such as fluency and adequacy, but also user perceptions. Users who do not understand the source language respond to MT output based on their perception of the likelihood that the meaning of the MT output matches the meaning of the source text. We refer to this as believability. Output that is not believable may be off-putting to users, but believable MT output with incorrect meaning may mislead them. In this work, we study the relationship of believability to fluency and adequacy by applying traditional MT direct assessment protocols to annotate all three features on the output of neural MT systems. Quantitative analysis of these annotations shows that believability is closely related to but distinct from fluency, and initial qualitative analysis suggests that semantic features may account for the difference.
In this talk, I will describe current research directions in my group that aim to make machine translation (MT) more human-centered. Instead of viewing MT solely as a task that aims to transduce a source sentence into a well-formed target language equivalent, we revisit all steps of the MT research and development lifecycle with the goal of designing MT systems that are able to help people communicate across language barriers. I will present methods to better characterize the parallel training data that powers MT systems, and how the degree of equivalence impacts translation quality. I will introduce models that enable flexible conditional language generation, and will discuss recent work on framing machine translation tasks and evaluation to center human factors.
This paper describes the University of Maryland’s submission to the Duolingo Shared Task on Simultaneous Translation And Paraphrase for Language Education (STAPLE). Unlike the standard machine translation task, STAPLE requires generating a set of outputs for a given input sequence, aiming to cover the space of translations produced by language learners. We adapt neural machine translation models to this requirement by (a) generating n-best translation hypotheses from a model fine-tuned on learner translations, oversampled to reflect the distribution of learner responses, and (b) filtering hypotheses using a feature-rich binary classifier that directly optimizes a close approximation of the official evaluation metric. Combination of systems that use these two strategies achieves F1 scores of 53.9% and 52.5% on Vietnamese and Portuguese, respectively ranking 2nd and 4th on the leaderboard.
We introduce a machine translation task where the output is aimed at audiences of different levels of target language proficiency. We collect a novel dataset of news articles available in English and Spanish and written for diverse reading grade levels. We leverage this dataset to train multitask sequence to sequence models that translate Spanish into English targeted at an easier reading grade level than the original Spanish. We show that multitask models outperform pipeline approaches that translate and simplify text independently.
Byte-Pair Encoding (BPE) (Sennrich et al., 2016) has become a standard pre-processing step when building neural machine translation systems. However, it is not clear whether this is an optimal strategy in all settings. We conduct a controlled comparison of subword segmentation strategies for translating two low-resource morphologically rich languages (Swahili and Turkish) into English. We show that segmentations based on a unigram language model (Kudo, 2018) yield comparable BLEU and better recall for translating rare source words than BPE.
This paper describes the University of Maryland’s submissions to the WMT20 Shared Task on Chat Translation. We focus on translating agent-side utterances from English to German. We started from an off-the-shelf BPE-based standard transformer model trained with WMT17 news and fine-tuned it with the provided in-domain training data. In addition, we augment the training set with its best matches in the WMT19 news dataset. Our primary submission uses a standard Transformer, while our contrastive submissions use multi-encoder Transformers to attend to previous utterances. Our primary submission achieves 56.7 BLEU on the agent side (en→de), outperforming a baseline system provided by the task organizers by more than 13 BLEU points. Moreover, according to an evaluation on a set of carefully-designed examples, the multi-encoder architecture is able to generate more coherent translations.
Users of machine translation (MT) may want to ensure the use of specific lexical terminologies. While there exist techniques for incorporating terminology constraints during inference for MT, current APE approaches cannot ensure that they will appear in the final translation. In this paper, we present both autoregressive and non-autoregressive models for lexically constrained APE, demonstrating that our approach enables preservation of 95% of the terminologies and also improves translation quality on English-German benchmarks. Even when applied to lexically constrained MT output, our approach is able to improve preservation of the terminologies. However, we show that our models do not learn to copy constraints systematically and suggest a simple data augmentation technique that leads to improved performance and robustness.
While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.
Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences.
This paper describes systems submitted to the Metaphor Shared Task at the Second Workshop on Figurative Language Processing. In this submission, we replicate the evaluation of the Bi-LSTM model introduced by Gao et al.(2018) on the VUA corpus in a new setting: TOEFL essays written by non-native English speakers. Our results show that Bi-LSTM models outperform feature-rich linear models on this challenging task, which is consistent with prior findings on the VUA dataset. However, the Bi-LSTM models lag behind the best performing systems in the shared task.
We aim to better exploit the limited amounts of parallel text available in low-resource settings by introducing a differentiable reconstruction loss for neural machine translation (NMT). This loss compares original inputs to reconstructed inputs, obtained by back-translating translation hypotheses into the input language. We leverage differentiable sampling and bi-directional NMT to train models end-to-end, without introducing additional parameters. This approach achieves small but consistent BLEU improvements on four language pairs in both translation directions, and outperforms an alternative differentiable reconstruction strategy based on hidden states.
We introduce a curriculum learning approach to adapt generic neural machine translation models to a specific domain. Samples are grouped by their similarities to the domain of interest and each group is fed to the training algorithm with a particular schedule. This approach is simple to implement on top of any neural framework or architecture, and consistently outperforms both unadapted and adapted baselines in experiments with two distinct domains and two language pairs.
Despite some empirical success at correcting exposure bias in machine translation, scheduled sampling algorithms suffer from a major drawback: they incorrectly assume that words in the reference translations and in sampled sequences are aligned at each time step. Our new differentiable sampling algorithm addresses this issue by optimizing the probability that the reference can be aligned with the sampled output, based on a soft alignment predicted by the model itself. As a result, the output distribution at each time step is evaluated with respect to the whole predicted sequence. Experiments on IWSLT translation tasks show that our approach improves BLEU compared to maximum likelihood and scheduled sampling baselines. In addition, our approach is simpler to train with no need for sampling schedule and yields models that achieve larger improvements with smaller beam sizes.
This work introduces a machine translation task where the output is aimed at audiences of different levels of target language proficiency. We collect a high quality dataset of news articles available in English and Spanish, written for diverse grade levels and propose a method to align segments across comparable bilingual articles. The resulting dataset makes it possible to train multi-task sequence to sequence models that can translate and simplify text jointly. We show that these multi-task models outperform pipeline approaches that translate and simplify text independently.
Words in different languages rarely cover the exact same semantic space. This work characterizes differences in meaning between words across languages using semantic relations that have been used to relate the meaning of English words. However, because of translation ambiguity, semantic relations are not always preserved by translation. We introduce a cross-lingual relation classifier trained only with English examples and a bilingual dictionary. Our classifier relies on a novel attention-based distillation approach to account for translation ambiguity when transferring knowledge from English to cross-lingual settings. On new English-Chinese and English-Hindi test sets, the resulting models largely outperform baselines that more naively rely on bilingual embeddings or dictionaries for cross-lingual transfer, and approach the performance of fully supervised systems on English tasks.
This paper describes the University of Maryland’s submission to the WMT 2019 Kazakh-English news translation task. We study the impact of transfer learning from another low-resource but related language. We experiment with different ways of encoding lexical units to maximize lexical overlap between the two language pairs, as well as back-translation and ensembling. The submitted system improves over a Kazakh-only baseline by +5.45 BLEU on newstest2019.
Cross-lingual Hypernymy Detection involves determining if a word in one language (“fruit”) is a hypernym of a word in another language (“pomme” i.e. apple in French). The ability to detect hypernymy cross-lingually can aid in solving cross-lingual versions of tasks such as textual entailment and event coreference. We propose BiSparse-Dep, a family of unsupervised approaches for cross-lingual hypernymy detection, which learns sparse, bilingual word embeddings based on dependency contexts. We show that BiSparse-Dep can significantly improve performance on this task, compared to approaches based only on lexical context. Our approach is also robust, showing promise for low-resource settings: our dependency-based embeddings can be learned using a parser trained on related languages, with negligible loss in performance. We also crowd-source a challenging dataset for this task on four languages – Russian, French, Arabic, and Chinese. Our embeddings and datasets are publicly available.
Recognizing that even correct translations are not always semantically equivalent, we automatically detect meaning divergences in parallel sentence pairs with a deep neural model of bilingual semantic similarity which can be trained for any parallel corpus without any manual annotation. We show that our semantic model detects divergences more accurately than models based on surface features derived from word alignments, and that these divergences matter for neural machine translation.
Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.
Despite impressive progress in high-resource settings, Neural Machine Translation (NMT) still struggles in low-resource and out-of-domain scenarios, often failing to match the quality of phrase-based translation. We propose a novel technique that combines back-translation and multilingual NMT to improve performance in these difficult cases. Our technique trains a single model for both directions of a language pair, allowing us to back-translate source or target monolingual data without requiring an auxiliary model. We then continue training on the augmented parallel data, enabling a cycle of improvement for a single model that can incorporate any source, target, or parallel data to improve both translation directions. As a byproduct, these models can reduce training and deployment costs significantly compared to uni-directional models. Extensive experiments show that our technique outperforms standard back-translation in low-resource scenarios, improves quality on cross-domain tasks, and effectively reduces costs across the board.
This paper describes the University of Maryland’s submission to the WMT 2018 Chinese↔English news translation tasks. Our systems are BPE-based self-attentional Transformer networks with parallel and backtranslated monolingual training data. Using ensembling and reranking, we improve over the Transformer baseline by +1.4 BLEU for Chinese→English and +3.97 BLEU for English→Chinese on newstest2017. Our best systems reach BLEU scores of 24.4 for Chinese→English and 39.0 for English→Chinese on newstest2018.
We describe the University of Maryland’s submission to SemEval-018 Task 10, “Capturing Discriminative Attributes”: given word triples (w1, w2, d), the goal is to determine whether d is a discriminating attribute belonging to w1 but not w2. Our study aims to determine whether word embeddings can address this challenging task. Our submission casts this problem as supervised binary classification using only word embedding features. Using a gaussian SVM model trained only on validation data results in an F-score of 60%. We also show that cosine similarity features are more effective, both in unsupervised systems (F-score of 65%) and supervised systems (F-score of 67%).
We introduce WHiC, a challenging testbed for detecting hypernymy, an asymmetric relation between words. While previous work has focused on detecting hypernymy between word types, we ground the meaning of words in specific contexts drawn from WordNet examples, and require predictions to be sensitive to changes in contexts. WHiC lets us analyze complementary properties of two approaches of inducing vector representations of word meaning in context. We show that such contextualized word representations also improve detection of a wider range of semantic relations in context.
Stylistic variations of language, such as formality, carry speakers’ intention beyond literal meaning and should be conveyed adequately in translation. We propose to use lexical formality models to control the formality level of machine translation output. We demonstrate the effectiveness of our approach in empirical evaluations, as measured by automatic metrics and human assessments.
Parallel corpora are often not as parallel as one might assume: non-literal translations and noisy translations abound, even in curated corpora routinely used for training and evaluation. We use a cross-lingual textual entailment system to distinguish sentence pairs that are parallel in meaning from those that are not, and show that filtering out divergent examples from training improves translation quality.
Detecting and analyzing stylistic variation in language is relevant to diverse Natural Language Processing applications. In this work, we investigate whether salient dimensions of style variations are embedded in standard distributional vector spaces of word meaning. We hypothesizes that distances between embeddings of lexical paraphrases can help isolate style from meaning variations and help identify latent style dimensions. We conduct a qualitative analysis of latent style dimensions, and show the effectiveness of identified style subspaces on a lexical formality prediction task.
We describe the University of Maryland machine translation system submitted to the IWSLT 2016 Microsoft Speech Language Translation (MSLT) English-French task. Our main finding is that translating conversation transcripts turned out to not be as challenging as we expected: while translation quality is of course not perfect, a straightforward phrase-based system trained on movie subtitles yields high BLEU scores (high 40s on the development set) and manual analysis of 100 examples showed that 61 of them were correctly translated, and errors were mostly local disfluencies in the remaining examples.
We develop two techniques for analyzing the effect of porting a machine translation system to a new domain. One is a macro-level analysis that measures how domain shift affects corpus-level evaluation; the second is a micro-level analysis for word-level errors. We apply these methods to understand what happens when a Parliament-trained phrase-based machine translation system is applied in four very different domains: news, medical texts, scientific articles and movie subtitles. We present quantitative and qualitative experiments that highlight opportunities for future research in domain adaptation for machine translation.
When parallel or comparable corpora are harvested from the web, there is typically a tradeoff between the size and quality of the data. In order to improve quality, corpus collection efforts often attempt to fix or remove misaligned sentence pairs. But, at the same time, Statistical Machine Translation (SMT) systems are widely assumed to be relatively robust to sentence alignment errors. However, there is little empirical evidence to support and characterize this robustness. This contribution investigates the impact of sentence alignment errors on a typical phrase-based SMT system. We confirm that SMT systems are highly tolerant to noise, and that performance only degrades seriously at very high noise levels. Our findings suggest that when collecting larger, noisy parallel data for training phrase-based SMT, cleaning up by trying to detect and remove incorrect alignments can actually degrade performance. Although fixing errors, when applicable, is a preferable strategy to removal, its benefits only become apparent for fairly high misalignment rates. We provide several explanations to support these findings.
We improve our recently proposed technique for integrating Arabic verb-subject constructions in SMT word alignment (Carpuat et al., 2010) by distinguishing between matrix (or main clause) and non-matrix Arabic verb-subject constructions. In gold translations, most matrix VS (main clause verb-subject) constructions are translated in inverted SV order, while non-matrix (subordinate clause) VS constructions are inverted in only half the cases. In addition, while detecting verbs and their subjects is a hard task, our syntactic parser detects VS constructions better in matrix than in non-matrix clauses. As a result, reordering only matrix VS for word alignment consistently improves translation quality over a phrase-based SMT baseline, and over reordering all VS constructions, in both medium- and large-scale settings. In fact, the improvements obtained by reordering matrix VS on the medium-scale setting remarkably represent 44% of the gain in BLEU and 51% of the gain in TER obtained with a word alignment training bitext that is 5 times larger.
We present new direct data analysis showing that dynamically-built context-dependent phrasal translation lexicons are more useful resources for phrase-based statistical machine translation (SMT) than conventional static phrasal translation lexicons, which ignore all contextual information. After several years of surprising negative results, recent work suggests that context-dependent phrasal translation lexicons are an appropriate framework to successfully incorporate Word Sense Disambiguation (WSD) modeling into SMT. However, this approach has so far only been evaluated using automatic translation quality metrics, which are important, but aggregate many different factors. A direct analysis is still needed to understand how context-dependent phrasal translation lexicons impact translation quality, and whether the additional complexity they introduce is really necessary. In this paper, we focus on the impact of context-dependent translation lexicons on lexical choice in phrase-based SMT and show that context-dependent lexicons are more useful to a phrase-based SMT system than a conventional lexicon. A typical phrase-based SMT system makes use of more and longer phrases with context modeling, including phrases that were not seen very frequently in training. Even when the segmentation is identical, the context-dependent lexicons yield translations that match references more often than conventional lexicons.
This paper describes the HKUST experiments in the IWSLT 2007 evaluation campaign on spoken language translation. Our primary objective was to compare the open-source phrase-based statistical machine translation toolkit Moses against Pharaoh. We focused on Chinese to English translation, but we also report results on the Arabic to English, Italian to English, and Japanese to English tasks.