Voice-driven software systems are in abundance. However, language models that power these systems are traditionally trained on fluent, written text corpora. Hence there can be a misalignment between the inherent disfluency of transcribed spoken content and the fluency of the written training data. Furthermore, gold-standard disfluency annotations of various complexities for incremental training can be expensive to collect. So, we propose in this paper a Disfluency Augmented Curriculum Learning (DACL) approach to tackle the complex structure of disfluent sentences and generate fluent texts from them, by using Curriculum Learning (CL) coupled with our synthetically augmented disfluent texts of various levels. DACL harnesses the tiered structure of our generated synthetic disfluent data using CL, by training the model on basic samples (i.e. more fluent) first before training it on more complex samples (i.e. more disfluent). In contrast to the random data exposure paradigm, DACL focuses on a simple-to-complex learning process. We comprehensively evaluate DACL on Switchboard Penn Treebank-3 and compare it to the state-of-the-art disfluency removal models. Our model surpasses existing techniques in word-based precision (by up to 1%) and has shown favorable recall and F1 scores.
Spoken content is abundant – including podcasts, meeting transcripts, and TikTok-like short videos. And yet, many important tasks like summarization are often designed for written content rather than the looser, noiser, and more disfluent style of spoken content. Hence, we aim in this paper to quantify the impact of disfluency on spoken content summarization. Do disfluencies negatively impact the quality of summaries generated by existing approaches? And if so, to what degree? Coupled with these goals, we also investigate two methods towards improving summarization in the presence of such disfluencies. We find that summarization quality does degrade with an increase in these disfluencies and that a combination of multiple disfluency types leads to even greater degradation. Further, our experimental results show that naively removing disfluencies and augmenting with special tags can worsen the summarization when used for testing, but that removing disfluencies for fine-tuning yields the best results. We make the code available at https://github.com/mariateleki/Quantifying-Impact-Disfluency.
Pre-trained Language Models are widely used in many important real-world applications. However, recent studies show that these models can encode social biases from large pre-training corpora and even amplify biases in downstream applications. To address this challenge, we propose Co2PT, an efficient and effective *debias-while-prompt tuning* method for mitigating biases via counterfactual contrastive prompt tuning on downstream tasks. Our experiments conducted on three extrinsic bias benchmarks demonstrate the effectiveness of Co2PT on bias mitigation during the prompt tuning process and its adaptability to existing upstream debiased language models. These findings indicate the strength of Co2PT and provide promising avenues for further enhancement in bias mitigation on downstream tasks.