Lu Jiang


2020

pdf
AdvAug: Robust Adversarial Augmentation for Neural Machine Translation
Yong Cheng | Lu Jiang | Wolfgang Macherey | Jacob Eisenstein
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we propose a new adversarial augmentation method for Neural Machine Translation (NMT). The main idea is to minimize the vicinal risk over virtual sentences sampled from two vicinity distributions, in which the crucial one is a novel vicinity distribution for adversarial sentences that describes a smooth interpolated embedding space centered around observed training sentence pairs. We then discuss our approach, AdvAug, to train NMT models using the embeddings of virtual sentences in sequence-to-sequence learning. Experiments on Chinese-English, English-French, and English-German translation benchmarks show that AdvAug achieves significant improvements over theTransformer (up to 4.9 BLEU points), and substantially outperforms other data augmentation techniques (e.g.back-translation) without using extra corpora.

2019

pdf
Robust Neural Machine Translation with Doubly Adversarial Inputs
Yong Cheng | Lu Jiang | Wolfgang Macherey
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Neural machine translation (NMT) often suffers from the vulnerability to noisy perturbations in the input. We propose an approach to improving the robustness of NMT models, which consists of two parts: (1) attack the translation model with adversarial source examples; (2) defend the translation model with adversarial target inputs to improve its robustness against the adversarial source inputs. For the generation of adversarial inputs, we propose a gradient-based method to craft adversarial examples informed by the translation loss over the clean inputs. Experimental results on Chinese-English and English-German translation tasks demonstrate that our approach achieves significant improvements (2.8 and 1.6 BLEU points) over Transformer on standard clean benchmarks as well as exhibiting higher robustness on noisy data.