This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
With the rise of generative AI, automated fact-checking methods to combat misinformation are becoming more and more important. However, factual claim detection, the first step in a fact-checking pipeline, suffers from two key issues that limit its scalability and generalizability: (1) inconsistency in definitions of the task and what a claim is, and (2) the high cost of manual annotation. To address (1), we review the definitions in related work and propose a unifying definition of factual claims that focuses on verifiability. To address (2), we introduce AFaCTA (Automatic Factual Claim deTection Annotator), a novel framework that assists in the annotation of factual claims with the help of large language models (LLMs). AFaCTA calibrates its annotation confidence with consistency along three predefined reasoning paths. Extensive evaluation and experiments in the domain of political speech reveal that AFaCTA can efficiently assist experts in annotating factual claims and training high-quality classifiers, and can work with or without expert supervision. Our analyses also result in PoliClaim, a comprehensive claim detection dataset spanning diverse political topics.
Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.
Multi-task learning (MTL) aims at achieving a better model by leveraging data and knowledge from multiple tasks. However, MTL does not always work – sometimes negative transfer occurs between tasks, especially when aggregating loosely related skills, leaving it an open question when MTL works. Previous studies show that MTL performance can be improved by algorithmic tricks. However, what tasks and skills should be included is less well explored. In this work, we conduct a case study in Financial NLP where multiple datasets exist for skills relevant to the domain, such as numeric reasoning and sentiment analysis. Due to the task difficulty and data scarcity in the Financial NLP domain, we explore when aggregating such diverse skills from multiple datasets with MTL can work. Our findings suggest that the key to MTL success lies in skill diversity, relatedness between tasks, and choice of aggregation size and shared capacity. Specifically, MTL works well when tasks are diverse but related, and when the size of the task aggregation and the shared capacity of the model are balanced to avoid overwhelming certain tasks.
In the face of climate change, are companies really taking substantial steps toward more sustainable operations? A comprehensive answer lies in the dense, information-rich landscape of corporate sustainability reports. However, the sheer volume and complexity of these reports make human analysis very costly. Therefore, only a few entities worldwide have the resources to analyze these reports at scale, which leads to a lack of transparency in sustainability reporting. Empowering stakeholders with LLM-based automatic analysis tools can be a promising way to democratize sustainability report analysis. However, developing such tools is challenging due to (1) the hallucination of LLMs and (2) the inefficiency of bringing domain experts into the AI development loop. In this paper, we introduce ChatReport, a novel LLM-based system to automate the analysis of corporate sustainability reports, addressing existing challenges by (1) making the answers traceable to reduce the harm of hallucination and (2) actively involving domain experts in the development loop. We make our methodology, annotated datasets, and generated analyses of 1015 reports publicly available. Video Introduction: https://www.youtube.com/watch?v=Q5AzaKzPE4M Github: https://github.com/EdisonNi-hku/chatreport Live web app: reports.chatclimate.ai
Human-translated text displays distinct features from naturally written text in the same language. This phenomena, known as translationese, has been argued to confound the machine translation (MT) evaluation. Yet, we find that existing work on translationese neglects some important factors and the conclusions are mostly correlational but not causal. In this work, we collect CausalMT, a dataset where the MT training data are also labeled with the human translation directions. We inspect two critical factors, the train-test direction match (whether the human translation directions in the training and test sets are aligned), and data-model direction match (whether the model learns in the same direction as the human translation direction in the dataset). We show that these two factors have a large causal effect on the MT performance, in addition to the test-model direction mismatch highlighted by existing work on the impact of translationese. In light of our findings, we provide a set of suggestions for MT training and evaluation. Our code and data are at https://github.com/EdisonNi-hku/CausalMT
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices.