Jinan Sun


2023

pdf
Exploiting Pseudo Image Captions for Multimodal Summarization
Chaoya Jiang | Rui Xie | Wei Ye | Jinan Sun | Shikun Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal summarization with multimodal output (MSMO) faces a challenging semantic gap between visual and textual modalities due to the lack of reference images for training. Our pilot investigation indicates that image captions, which naturally connect texts and images, can significantly benefit MSMO. However, exposure of image captions during training is inconsistent with MSMO’s task settings, where prior cross-modal alignment information is excluded to guarantee the generalization of cross-modal semantic modeling. To this end, we propose a novel coarse-to-fine image-text alignment mechanism to identify the most relevant sentence of each image in a document, resembling the role of image captions in capturing visual knowledge and bridging the cross-modal semantic gap. Equipped with this alignment mechanism, our method easily yet impressively sets up state-of-the-art performances on all intermodality and intramodality metrics (e.g., more than 10% relative improvement on image recommendation precision). Further experiments reveal the correlation between image captions and text summaries, and prove that the pseudo image captions we generated are even better than the original ones in terms of promoting multimodal summarization.

2021

pdf
Point, Disambiguate and Copy: Incorporating Bilingual Dictionaries for Neural Machine Translation
Tong Zhang | Long Zhang | Wei Ye | Bo Li | Jinan Sun | Xiaoyu Zhu | Wen Zhao | Shikun Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

This paper proposes a sophisticated neural architecture to incorporate bilingual dictionaries into Neural Machine Translation (NMT) models. By introducing three novel components: Pointer, Disambiguator, and Copier, our method PDC achieves the following merits inherently compared with previous efforts: (1) Pointer leverages the semantic information from bilingual dictionaries, for the first time, to better locate source words whose translation in dictionaries can potentially be used; (2) Disambiguator synthesizes contextual information from the source view and the target view, both of which contribute to distinguishing the proper translation of a specific source word from multiple candidates in dictionaries; (3) Copier systematically connects Pointer and Disambiguator based on a hierarchical copy mechanism seamlessly integrated with Transformer, thereby building an end-to-end architecture that could avoid error propagation problems in alternative pipe-line methods. The experimental results on Chinese-English and English-Japanese benchmarks demonstrate the PDC’s overall superiority and effectiveness of each component.