This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Contrastive learning has demonstrated promising results in unsupervised abstractive summarization. However, existing methods rely on manually crafted negative examples, demanding substantial human effort and domain knowledge. Moreover, these human-generated negative examples may be poor in quality and lack adaptability during model training. To address these issues, we propose a novel approach that learns trainable negative examples for contrastive learning in unsupervised abstractive summarization, which eliminates the need for manual negative example design. Our framework introduces an adversarial optimization process between a negative example network and a representation network (including the summarizer and encoders). The negative example network is trained to synthesize hard negative examples that are close to the positive examples, driving the representation network to improve the quality of the generated summaries. We evaluate our method on two benchmark datasets for unsupervised abstractive summarization and observe significant performance improvements compared to strong baseline models.
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).
Multimodal summarization with multimodal output (MSMO) has attracted increasing research interests recently as multimodal summary could provide more comprehensive information compared to text-only summary, effectively improving the user experience and satisfaction. As one of the most fundamental components for the development of MSMO, evaluation is an emerging yet underexplored research topic. In this paper, we fill this gap and propose a research framework that studies three research questions of MSMO evaluation: (1) Automatic Evaluation: We propose a novel metric mLLM-EVAL, which utilizes multimodal Large Language Model for MSMO EVALuation. (2) Meta-Evaluation: We create a meta-evaluation benchmark dataset by collecting human-annotated scores for multimodal summaries. With our benchmark, we conduct meta-evaluation analysis to assess the quality of different evaluation metrics and show the effectiveness of our proposed mLLM-EVAL. (3) Human Evaluation: To provide more objective and unbiased human annotations for meta-evaluation, we hypothesize and verify three types of cognitive biases in human evaluation. We also incorporate our findings into the human annotation process in the meta-evaluation benchmark. Overall, our research framework provides an evaluation metric, a meta-evaluation benchmark dataset annotated by humans and an analysis of cognitive biases in human evaluation, which we believe would serve as a valuable and comprehensive resource for the MSMO research community.
Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks.When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
New Intent Discovery (NID) aims at detecting known and previously undefined categories of user intent by utilizing limited labeled and massive unlabeled data. Most prior works often operate under the unrealistic assumption that the distribution of both familiar and new intent classes is uniform, overlooking the skewed and long-tailed distributions frequently encountered in real-world scenarios. To bridge the gap, our work introduces the imbalanced new intent discovery i-NID task, which seeks to identify familiar and novel intent categories within long-tailed distributions. A new benchmark baNID-Bench comprised of three datasets is created to simulate the real-world long-tail distributions. ImbaNID-Bench ranges from broad cross-domain to specific single-domain intent categories, providing a thorough representation of practical use cases. Besides, a robust baseline model ImbaNID is proposed to achieve cluster-friendly intent representations. It includes three stages: model pre-training, generation of reliable pseudo-labels, and robust representation learning that strengthens the model performance to handle the intricacies of real-world data distributions. Our extensive experiments on previous benchmarks and the newly established benchmark demonstrate the superior performance of ImbaNID in addressing the i-NID task, highlighting its potential as a powerful baseline for uncovering and categorizing user intents in imbalanced and long-tailed distributions.
The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to-SQL tasks. In this paper, we introduce a synthetic data approach that combines data produced by larger, more powerful models (strong models) with error information data generated by smaller, not well-aligned models (weak models). The method not only enhances the domain generalization of text-to-SQL models but also explores the potential of error data supervision through preference learning. Furthermore, we employ the synthetic data approach for instruction tuning on open-source LLMs, resulting SENSE, a specialized text-to-SQL model. The effectiveness of SENSE is demonstrated through state-of-the-art results on the SPIDER and BIRD benchmarks, bridging the performance gap between open-source models and methods prompted by closed-source models.
Multilingual translation supports multiple translation directions by projecting all languages in a shared space, but the translation quality is undermined by the difference between languages in the text-only modality, especially when the number of languages is large. To bridge this gap, we introduce visual context as the universal language-independent representation to facilitate multilingual translation. In this paper, we propose a framework to leverage the multimodal prompt to guide the Multimodal Multilingual Neural Machine Translation (m3P), which aligns the representations of different languages with the same meaning and generates the conditional vision-language memory for translation. We construct a multilingual multimodal instruction dataset (InstrMulti102) to support 102 languages Our method aims to minimize the representation distance of different languages by regarding the image as a central language. Experimental results show that m3P outperforms previous text-only baselines and multilingual multimodal methods by a large margin. Furthermore, the probing experiments validate the effectiveness of our method in enhancing translation under the low-resource and massively multilingual scenario.
New Intent Discovery (NID) aims to recognize known and infer new intent categories with the help of limited labeled and large-scale unlabeled data. The task is addressed as a feature-clustering problem and recent studies augment instance representation. However, existing methods fail to capture cluster-friendly representations, since they show less capability to effectively control and coordinate within-cluster and between-cluster distances. Tailored to the NID problem, we propose a Robust and Adaptive Prototypical learning (RAP) framework for globally distinct decision boundaries for both known and new intent categories. Specifically, a robust prototypical attracting learning (RPAL) method is designed to compel instances to gravitate toward their corresponding prototype, achieving greater within-cluster compactness. To attain larger between-cluster separation, another adaptive prototypical dispersing learning (APDL) method is devised to maximize the between-cluster distance from the prototype-to-prototype perspective. Experimental results evaluated on three challenging benchmarks (CLINC, BANKING, and StackOverflow) of our method with better cluster-friendly representation demonstrate that RAP brings in substantial improvements over the current state-of-the-art methods (even large language model) by a large margin (average 5.5% improvement).
Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.
Multimodal manga analysis focuses on enhancing manga understanding with visual and textual features, which has attracted considerable attention from both natural language processing and computer vision communities. Currently, most comics are hand-drawn and prone to problems such as missing pages, text contamination, and text aging, resulting in missing comic text content and seriously hindering human comprehension. In other words, the Multimodal Manga Complement (M2C) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for vision and language understanding. To this end, we first propose the Multimodal Manga Complement task by establishing a new M2C benchmark dataset covering two languages. First, we design a manga argumentation method called MCoT to mine event knowledge in comics with large language models. Then, an effective baseline FVP-M2 using fine-grained visual prompts is proposed to support manga complement. Extensive experimental results show the effectiveness of FVP-M2 method for Multimodal Mange Complement.
Standard automatic metrics, e.g. BLEU, are not reliable for document-level MT evaluation. They can neither distinguish document-level improvements in translation quality from sentence-level ones, nor identify the discourse phenomena that cause context-agnostic translations. This paper introduces a novel automatic metric BlonDe to widen the scope of automatic MT evaluation from sentence to document level. BlonDe takes discourse coherence into consideration by categorizing discourse-related spans and calculating the similarity-based F1 measure of categorized spans. We conduct extensive comparisons on a newly constructed dataset BWB. The experimental results show that BlonDe possesses better selectivity and interpretability at the document-level, and is more sensitive to document-level nuances. In a large-scale human study, BlonDe also achieves significantly higher Pearson’s r correlation with human judgments compared to previous metrics.
Multimodal Machine Translation (MMT) focuses on enhancing text-only translation with visual features, which has attracted considerable attention from both natural language processing and computer vision communities. Recent advances still struggle to train a separate model for each language pair, which is costly and unaffordable when the number of languages increases in the real world. In other words, the multilingual multimodal machine translation (Multilingual MMT) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for multiple languages. Besides, the image modality has no language boundaries, which is superior to bridging the semantic gap between languages. To this end,we first propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages.Then, an effective baseline LVP-M3 using visual prompts is proposed to support translations between different languages,which includes three stages (token encoding, language-aware visual prompt generation, and language translation). Extensive experimental results on our constructed benchmark datasets demonstrate the effectiveness of LVP-M3 method for Multilingual MMT.
Named entity recognition (NER) suffers from the scarcity of annotated training data, especially for low-resource languages without labeled data. Cross-lingual NER has been proposed to alleviate this issue by transferring knowledge from high-resource languages to low-resource languages via aligned cross-lingual representations or machine translation results. However, the performance of cross-lingual NER methods is severely affected by the unsatisfactory quality of translation or label projection. To address these problems, we propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER with the help of a multilingual labeled sequence translation model. Specifically, the target sequence is first translated into the source language and then tagged by a source NER model. We further adopt a labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence. Ultimately, the whole pipeline is integrated into an end-to-end model by the way of self-training. Experimental results on two benchmarks demonstrate that our method substantially outperforms the previous strong baseline by a large margin of +3 7 F1 scores and achieves state-of-the-art performance.
Most of the state-of-the-art methods for abstractive text summarization are under supervised learning settings, while heavily relying on high-quality and large-scale parallel corpora. In this paper, we remove the need for reference summaries and present an unsupervised learning method SCR (Summarize, Contrast and Review) for abstractive summarization, which leverages contrastive learning and is the first work to apply contrastive learning for unsupervised abstractive summarization. Particularly, we use the true source documents as positive source document examples, and strategically generated fake source documents as negative source document examples to train the model to generate good summaries. Furthermore, we consider and improve the writing quality of the generated summaries by guiding them to be similar to human-written texts. The promising results on extensive experiments show that SCR outperforms other unsupervised abstractive summarization baselines, which demonstrates its effectiveness.
While end-to-end neural machine translation (NMT) has achieved impressive progress, noisy input usually leads models to become fragile and unstable. Generating adversarial examples as the augmented data has been proved to be useful to alleviate this problem. Existing methods for adversarial example generation (AEG) are word-level or character-level, which ignore the ubiquitous phrase structure. In this paper, we propose a Phrase-level Adversarial Example Generation (PAEG) framework to enhance the robustness of the translation model. Our method further improves the gradient-based word-level AEG method by adopting a phrase-level substitution strategy. We verify our method on three benchmarks, including LDC Chinese-English, IWSLT14 German-English, and WMT14 English-German tasks. Experimental results demonstrate that our approach significantly improves translation performance and robustness to noise compared to previous strong baselines.
Although multilingual neural machine translation (MNMT) enables multiple language translations, the training process is based on independent multilingual objectives. Most multilingual models can not explicitly exploit different language pairs to assist each other, ignoring the relationships among them. In this work, we propose a novel agreement-based method to encourage multilingual agreement among different translation directions, which minimizes the differences among them. We combine the multilingual training objectives with the agreement term by randomly substituting some fragments of the source language with their counterpart translations of auxiliary languages. To examine the effectiveness of our method, we conduct experiments on the multilingual translation task of 10 language pairs. Experimental results show that our method achieves significant improvements over the previous multilingual baselines.
Most current neural machine translation models adopt a monotonic decoding order of either left-to-right or right-to-left. In this work, we propose a novel method that breaks up the limitation of these decoding orders, called Smart-Start decoding. More specifically, our method first predicts a median word. It starts to decode the words on the right side of the median word and then generates words on the left. We evaluate the proposed Smart-Start decoding method on three datasets. Experimental results show that the proposed method can significantly outperform strong baseline models.
This report describes Microsoft’s machine translation systems for the WMT21 shared task on large-scale multilingual machine translation. We participated in all three evaluation tracks including Large Track and two Small Tracks where the former one is unconstrained and the latter two are fully constrained. Our model submissions to the shared task were initialized with DeltaLM, a generic pre-trained multilingual encoder-decoder model, and fine-tuned correspondingly with the vast collected parallel data and allowed data sources according to track settings, together with applying progressive learning and iterative back-translation approaches to further improve the performance. Our final submissions ranked first on three tracks in terms of the automatic evaluation metric.
Although neural machine translation (NMT) has achieved significant progress in recent years, most previous NMT models only depend on the source text to generate translation. Inspired by the success of template-based and syntax-based approaches in other fields, we propose to use extracted templates from tree structures as soft target templates to guide the translation procedure. In order to learn the syntactic structure of the target sentences, we adopt constituency-based parse tree to generate candidate templates. We incorporate the template information into the encoder-decoder framework to jointly utilize the templates and source text. Experiments show that our model significantly outperforms the baseline models on four benchmarks and demonstrates the effectiveness of soft target templates.
We study open domain response generation with limited message-response pairs. The problem exists in real-world applications but is less explored by the existing work. Since the paired data now is no longer enough to train a neural generation model, we consider leveraging the large scale of unpaired data that are much easier to obtain, and propose response generation with both paired and unpaired data. The generation model is defined by an encoder-decoder architecture with templates as prior, where the templates are estimated from the unpaired data as a neural hidden semi-markov model. By this means, response generation learned from the small paired data can be aided by the semantic and syntactic knowledge in the large unpaired data. To balance the effect of the prior and the input message to response generation, we propose learning the whole generation model with an adversarial approach. Empirical studies on question response generation and sentiment response generation indicate that when only a few pairs are available, our model can significantly outperform several state-of-the-art response generation models in terms of both automatic and human evaluation.