This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This presentation demonstrates data augmentation methods for Neural Machine Translation to make use of similar translations, in a comparable way a human translator employs fuzzy matches. We show how we simply feed the neural model with information on both source and target sides of the fuzzy matches, and we also extend the similarity to include semantically related translations retrieved using distributed sentence representations. We show that translations based on fuzzy matching provide the model with “copy” information while translations based on embedding similarities tend to extend the translation “context”. Results indicate that the effect from both similar sentences are adding up to further boost accuracy, are combining naturally with model fine-tuning and are providing dynamic adaptation for unseen translation pairs. Tests on multiple data sets and domains show consistent accuracy improvements.
Despite a narrowed performance gap with direct approaches, cascade solutions, involving automatic speech recognition (ASR) and machine translation (MT) are still largely employed in speech translation (ST). Direct approaches employing a single model to translate the input speech signal suffer from the critical bottleneck of data scarcity. In addition, multiple industry applications display speech transcripts alongside translations, making cascade approaches more realistic and practical. In the context of cascaded simultaneous ST, we propose several solutions to adapt a neural MT network to take as input the transcripts output by an ASR system. Adaptation is achieved by enriching speech transcripts and MT data sets so that they more closely resemble each other, thereby improving the system robustness to error propagation and enhancing result legibility for humans. We address aspects such as sentence boundaries, capitalisation, punctuation, hesitations, repetitions, homophones, etc. while taking into account the low latency requirement of simultaneous ST systems.
This paper describes SYSTRAN submissions to the WMT 2021 terminology shared task. We participate in the English-to-French translation direction with a standard Transformer neural machine translation network that we enhance with the ability to dynamically include terminology constraints, a very common industrial practice. Two state-of-the-art terminology insertion methods are evaluated based (i) on the use of placeholders complemented with morphosyntactic annotation and (ii) on the use of target constraints injected in the source stream. Results show the suitability of the presented approaches in the evaluated scenario where terminology is used in a system trained on generic data only.
This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain. Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques. We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance. Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only.
This paper describes the OpenNMT submissions to the WNGT 2020 efficiency shared task. We explore training and acceleration of Transformer models with various sizes that are trained in a teacher-student setup. We also present a custom and optimized C++ inference engine that enables fast CPU and GPU decoding with few dependencies. By combining additional optimizations and parallelization techniques, we create small, efficient, and high-quality neural machine translation models.
Priming is a well known and studied psychology phenomenon based on the prior presentation of one stimulus (cue) to influence the processing of a response. In this paper, we propose a framework to mimic the process of priming in the context of neural machine translation (NMT). We evaluate the effect of using similar translations as priming cues on the NMT network. We propose a method to inject priming cues into the NMT network and compare our framework to other mechanisms that perform micro-adaptation during inference. Overall, experiments conducted in a multi-domain setting confirm that adding priming cues in the NMT decoder can go a long way towards improving the translation accuracy. Besides, we show the suitability of our framework to gather valuable information for an NMT network from monolingual resources.
Domain adaptation is an old and vexing problem for machine translation systems. The most common approach and successful to supervised adaptation is to fine-tune a baseline system with in-domain parallel data. Standard fine-tuning however modifies all the network parameters, which makes this approach computationally costly and prone to overfitting. A recent, lightweight approach, instead augments a baseline model with supplementary (small) adapter layers, keeping the rest of the mode unchanged. This has the additional merit to leave the baseline model intact, and adaptable to multiple domains. In this paper, we conduct a thorough analysis of the adapter model in the context of a multidomain machine translation task. We contrast multiple implementations of this idea on two language pairs. Our main conclusions are that residual adapters provide a fast and cheap method for supervised multi-domain adaptation; our two variants prove as effective as the original adapter model, and open perspective to also make adapted models more robust to label domain errors.
This paper explores data augmentation methods for training Neural Machine Translation to make use of similar translations, in a comparable way a human translator employs fuzzy matches. In particular, we show how we can simply present the neural model with information of both source and target sides of the fuzzy matches, we also extend the similarity to include semantically related translations retrieved using sentence distributed representations. We show that translations based on fuzzy matching provide the model with “copy” information while translations based on embedding similarities tend to extend the translation “context”. Results indicate that the effect from both similar sentences are adding up to further boost accuracy, combine naturally with model fine-tuning and are providing dynamic adaptation for unseen translation pairs. Tests on multiple data sets and domains show consistent accuracy improvements. To foster research around these techniques, we also release an Open-Source toolkit with efficient and flexible fuzzy-match implementation.
This paper describes Systran’s submissions to WAT 2019 Russian-Japanese News Commentary task. A challenging translation task due to the extremely low resources available and the distance of the language pair. We have used the neural Transformer architecture learned over the provided resources and we carried out synthetic data generation experiments which aim at alleviating the data scarcity problem. Results indicate the suitability of the data augmentation experiments, enabling our systems to rank first according to automatic evaluations.
Neural models have recently shown significant progress on data-to-text generation tasks in which descriptive texts are generated conditioned on database records. In this work, we present a new Transformer-based data-to-text generation model which learns content selection and summary generation in an end-to-end fashion. We introduce two extensions to the baseline transformer model: First, we modify the latent representation of the input, which helps to significantly improve the content correctness of the output summary; Second, we include an additional learning objective that accounts for content selection modelling. In addition, we propose two data augmentation methods that succeed to further improve performance of the resulting generation models. Evaluation experiments show that our final model outperforms current state-of-the-art systems as measured by different metrics: BLEU, content selection precision and content ordering. We made publicly available the transformer extension presented in this paper.
This paper describes SYSTRAN participation to the Document-level Generation and Trans- lation (DGT) Shared Task of the 3rd Workshop on Neural Generation and Translation (WNGT 2019). We participate for the first time using a Transformer network enhanced with modified input embeddings and optimising an additional objective function that considers content selection. The network takes in structured data of basketball games and outputs a summary of the game in natural language.
Supervised machine translation works well when the train and test data are sampled from the same distribution. When this is not the case, adaptation techniques help ensure that the knowledge learned from out-of-domain texts generalises to in-domain sentences. We study here a related setting, multi-domain adaptation, where the number of domains is potentially large and adapting separately to each domain would waste training resources. Our proposal transposes to neural machine translation the feature expansion technique of (Daumé III, 2007): it isolates domain-agnostic from domain-specific lexical representations, while sharing the most of the network across domains. Our experiments use two architectures and two language pairs: they show that our approach, while simple and computationally inexpensive, outperforms several strong baselines and delivers a multi-domain system that successfully translates texts from diverse sources.
This work is inspired by a typical machine translation industry scenario in which translators make use of in-domain data for facilitating translation of similar or repeating sentences. We introduce a generic framework applied at inference in which a subset of segment pairs are first extracted from training data according to their similarity to the input sentences. These segments are then used to dynamically update the parameters of a generic NMT network, thus performing a lexical micro-adaptation. Our approach demonstrates strong adaptation performance to new and existing datasets including pseudo in-domain data. We evaluate our approach on a heterogeneous English-French training dataset showing accuracy gains on all evaluated domains when compared to strong adaptation baselines.
Knowledge distillation has recently been successfully applied to neural machine translation. It allows for building shrunk networks while the resulting systems retain most of the quality of the original model. Despite the fact that many authors report on the benefits of knowledge distillation, few have discussed the actual reasons why it works, especially in the context of neural MT. In this paper, we conduct several experiments aimed at understanding why and how distillation impacts accuracy on an English-German translation task. We show that translation complexity is actually reduced when building a distilled/synthesised bi-text when compared to the reference bi-text. We further remove noisy data from synthesised translations and merge filtered synthesised data together with original reference, thus achieving additional gains in terms of accuracy.
We present a system description of the OpenNMT Neural Machine Translation entry for the WNMT 2018 evaluation. In this work, we developed a heavily optimized NMT inference model targeting a high-performance CPU system. The final system uses a combination of four techniques, all of them lead to significant speed-ups in combination: (a) sequence distillation, (b) architecture modifications, (c) precomputation, particularly of vocabulary, and (d) CPU targeted quantization. This work achieves the fastest performance of the shared task, and led to the development of new features that have been integrated to OpenNMT and available to the community.
SYSTRAN competes this year for the first time to the DSL shared task, in the Arabic Dialect Identification subtask. We participate by training several Neural Network models showing that we can obtain competitive results despite the limited amount of training data available for learning. We report our experiments and detail the network architecture and parameters of our 3 runs: our best performing system consists in a Multi-Input CNN that learns separate embeddings for lexical, phonetic and acoustic input features (F1: 0.5289); we also built a CNN-biLSTM network aimed at capturing both spatial and sequential features directly from speech spectrograms (F1: 0.3894 at submission time, F1: 0.4235 with later found parameters); and finally a system relying on binary CNN-biLSTMs (F1: 0.4339).
This paper describes the participation of SYSTRAN to the shared task on parallel corpus filtering at the Third Conference on Machine Translation (WMT 2018). We participate for the first time using a neural sentence similarity classifier which aims at predicting the relatedness of sentence pairs in a multilingual context. The paper describes the main characteristics of our approach and discusses the results obtained on the data sets published for the shared task.
Corpus-based approaches to machine translation rely on the availability of clean parallel corpora. Such resources are scarce, and because of the automatic processes involved in their preparation, they are often noisy. This paper describes an unsupervised method for detecting translation divergences in parallel sentences. We rely on a neural network that computes cross-lingual sentence similarity scores, which are then used to effectively filter out divergent translations. Furthermore, similarity scores predicted by the network are used to identify and fix some partial divergences, yielding additional parallel segments. We evaluate these methods for English-French and English-German machine translation tasks, and show that using filtered/corrected corpora actually improves MT performance.
Training efficiency is one of the main problems for Neural Machine Translation (NMT). Deep networks need for very large data as well as many training iterations to achieve state-of-the-art performance. This results in very high computation cost, slowing down research and industrialisation. In this paper, we propose to alleviate this problem with several training methods based on data boosting and bootstrap with no modifications to the neural network. It imitates the learning process of humans, which typically spend more time when learning “difficult” concepts than easier ones. We experiment on an English-French translation task showing accuracy improvements of up to 1.63 BLEU while saving 20% of training time.
Machine translation systems are very sensitive to the domains they were trained on. Several domain adaptation techniques have already been deeply studied. We propose a new technique for neural machine translation (NMT) that we call domain control which is performed at runtime using a unique neural network covering multiple domains. The presented approach shows quality improvements when compared to dedicated domains translating on any of the covered domains and even on out-of-domain data. In addition, model parameters do not need to be re-estimated for each domain, making this effective to real use cases. Evaluation is carried out on English-to-French translation for two different testing scenarios. We first consider the case where an end-user performs translations on a known domain. Secondly, we consider the scenario where the domain is not known and predicted at the sentence level before translating. Results show consistent accuracy improvements for both conditions.
L’adaptation au domaine est un verrou scientifique en traduction automatique. Il englobe généralement l’adaptation de la terminologie et du style, en particulier pour la post-édition humaine dans le cadre d’une traduction assistée par ordinateur. Avec la traduction automatique neuronale, nous étudions une nouvelle approche d’adaptation au domaine que nous appelons “spécialisation” et qui présente des résultats prometteurs tant dans la vitesse d’apprentissage que dans les scores de traduction. Dans cet article, nous proposons d’explorer cette approche.
Cet article présente un système d’alertes fondé sur la masse de données issues de Tweeter. L’objectif de l’outil est de surveiller l’actualité, autour de différents domaines témoin incluant les événements sportifs ou les catastrophes naturelles. Cette surveillance est transmise à l’utilisateur sous forme d’une interface web contenant la liste d’événements localisés sur une carte.
It is well known that statistical machine translation systems perform best when they are adapted to the task. In this paper we propose new methods to quickly perform incremental adaptation without the need to obtain word-by-word alignments from GIZA or similar tools. The main idea is to use an automatic translation as pivot to infer alignments between the source sentence and the reference translation, or user correction. We compared our approach to the standard method to perform incremental re-training. We achieve similar results in the BLEU score using less computational resources. Fast retraining is particularly interesting when we want to almost instantly integrate user feed-back, for instance in a post-editing context or machine translation assisted CAT tool. We also explore several methods to combine the translation models.
The Quaero program is an international project promoting research and industrial innovation on technologies for automatic analysis and classification of multimedia and multilingual documents. Within the program framework, research organizations and industrial partners collaborate to develop prototypes of innovating applications and services for access and usage of multimedia data. One of the topics addressed is the translation of spoken language. Each year, a project-internal evaluation is conducted by DGA to monitor the technological advances. This work describes the design and results of the 2011 evaluation campaign. The participating partners were RWTH, KIT, LIMSI and SYSTRAN. Their approaches are compared on both ASR output and reference transcripts of speech data for the translation between French and German. The results show that the developed techniques further the state of the art and improve translation quality.
We present two methods that merge ideas from statistical machine translation (SMT) and translation memories (TM). We use a TM to retrieve matches for source segments, and replace the mismatched parts with instructions to an SMT system to fill in the gap. We show that for fuzzy matches of over 70%, one method outperforms both SMT and TM baselines.
We present a novel exact solution to the approximate string matching problem in the context of translation memories, where a text segment has to be matched against a large corpus, while allowing for errors. We use suffix arrays to detect exact n-gram matches, A* search heuristics to discard matches and A* parsing to validate candidate segments. The method outperforms the canonical baseline by a factor of 100, with average lookup times of 4.3–247ms for a segment in a realistic scenario.
Customization of Machine Translation (MT) is a prerequisite for corporations to adopt the technology. It is therefore important but nonetheless challenging. Ongoing implementation proves that XML is an excellent exchange device between MT modules that efficiently enables interaction between the user and the processes to reach highly granulated structure-based customization. Accomplished through an innovative approach called the SYSTRAN Translation Stylesheet, this method is coherent with the current evolution of the “authoring process”. As a natural progression, the next stage in the customization process is the integration of MT in a multilingual tool kit designed for the “authoring process”.
Customizing a general-purpose MT system is an effective way to improve machine translation quality for specific usages. Building a user-specific dictionary is the first and most important step in the customization process. An intuitive dictionary-coding tool was developed and is now utilized to allow the user to build user dictionaries easily and intelligently. SYSTRAN’s innovative and proprietary IntuitiveCoding® technology is the engine powering this tool. It is comprised of various components: massive linguistic resources, a morphological analyzer, a statistical guesser, finite-state automaton, and a context-free grammar. Methodologically, IntuitiveCoding® is also a cross-application approach for high quality dictionary building in terminology import and exchange. This paper describes the various components and the issues involved in its implementation. An evaluation frame and utilization of the technology are also presented.
SYSTRAN started the design and the development of Arabic, Farsi and Urdu to English machine translation systems in July 2002. This paper describes the methodology and implementation adopted for dictionary building and morphological analysis. SYSTRAN’s IntuitiveCoding® technology (ICT) for facilitates the creation, update, and maintenance of Arabic, Farsi and Urdu lexical entries, is more modular and less costly. ICT for Arabic, Farsi, and Urdu requires the implementation of stem-based lexical entries, the authentic scripts for each language, a statistical Arabic stem-guesser, and separate declarative modules for internal and external morphology.
In this paper, we present the design of the new generation Systran translation systems, currently utilized in the development of English-Hungarian, English-Polish, English-Arabic, French-Arabic, Hungarian-French and Polish-French language pairs. The new design, based on the traditional Systran machine translation expertise and the existing linguistic resources, addresses the following aspects: efficiency, modularity, declarativity, reusability, and maintainability. Technically, the new systems rely on intensive use of state-of-the-art finite automaton and formal grammar implementation. The finite automata provide the essential lookup facilities and the natural capacity of factorizing intuitive linguistic sets. Linguistically, we have introduced a full monolingual description of linguistic information and the concept of implicit transfer. Finally, we present some by-products that are directly derived from the new architecture: intuitive coding tools, spell checker and syntactic tagger.
In this article we present the concept of “implicit transfer” rules. We will show that they represent a valid compromise between huge direct transfer terminology lists and large sets of transfer rules, which are very complex to maintain. We present a concrete, real-life application of this concept in a customization project (TOLEDO project) concerning the automatic translation of Autodesk (ADSK) support pages. In this application, the alignment is moreover combined with a graph representation substituting linear dictionaries. We show how the concept could be extended to increase coverage of traditional translation dictionaries as well as to extract terminology from large existing multilingual corpora. We also introduce the concept of "alignment dictionary" which seems promising in its ability to extend the pragmatic limits of multilingual dictionary management.