Hui Cai


2024

pdf
Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning
Yinger Zhang | Hui Cai | Xierui Song | Yicheng Chen | Rui Sun | Jing Zheng
Findings of the Association for Computational Linguistics: NAACL 2024

While enabling large language models to implement function calling (known as APIs) can greatly enhance the performance of Large Language Models (LLMs), function calling is still a challenging task due to the complicated relations between different APIs, especially in a context-learning setting without fine-tuning. This paper introduces “Reverse Chain”, a controllable, target-driven approach designed to empower LLMs with the capability to operate external APIs only via prompts. Recognizing that most LLMs have limited tool-use capabilities, Reverse Chain limits LLMs to executing simple tasks, e.g., API Selection and Argument Completion. Furthermore, to manage a controllable multi-function calling, Reverse Chain adopts a generic rule-based on a backward reasoning process. This rule determines when to do API selection or Argument completion. To evaluate the multi-tool-use capability of LLMs, we have released a compositional multi-tool task dataset, available at https://github.com/zhangyingerjelly/reverse-chain. Extensive numerical experiments validate the remarkable proficiency of Reverse Chain in managing multiple API calls.

pdf
Efficient Knowledge Infusion via KG-LLM Alignment
Zhouyu Jiang | Ling Zhong | Mengshu Sun | Jun Xu | Rui Sun | Hui Cai | Shuhan Luo | Zhiqiang Zhang
Findings of the Association for Computational Linguistics ACL 2024

To tackle the problem of domain-specific knowledge scarcity within large language models (LLMs), knowledge graph-retrievalaugmented method has been proven to be an effective and efficient technique for knowledge infusion. However, existing approaches face two primary challenges: knowledge mismatch between public available knowledge graphs and the specific domain of the task at hand, and poor information compliance of LLMs with knowledge graphs. In this paper, we leverage a small set of labeled samples and a large-scale corpus to efficiently construct domain-specific knowledge graphs by an LLM, addressing the issue of knowledge mismatch. Additionally, we propose a three-stage KG-LLM alignment strategy to enhance the LLM’s capability to utilize information from knowledge graphs. We conduct experiments with a limited-sample setting on two biomedical question-answering datasets, and the results demonstrate that our approach outperforms existing baselines.