Heng Huang


2024

pdf
Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection
Ruibo Chen | Yihan Wu | Lichang Chen | Guodong Liu | Qi He | Tianyi Xiong | Chenxi Liu | Junfeng Guo | Heng Huang
Findings of the Association for Computational Linguistics ACL 2024

Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.

2023

pdf
PTP: Boosting Stability and Performance of Prompt Tuning with Perturbation-Based Regularizer
Lichang Chen | Jiuhai Chen | Heng Huang | Minhao Cheng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent studies show that prompt tuning can better leverage the power of large language models than fine-tuning on downstream natural language understanding tasks. However, the existing prompt tuning methods have training instability issues, as the variance of scores under different random seeds is quite large. To address this critical problem, we first investigate and find that the loss landscape of vanilla prompt tuning is precipitous when it is visualized, where a slight change of input data can cause a big fluctuation in the loss landscape. This is an essential factor that leads to the instability of prompt tuning. Based on this observation, we introduce perturbation-based regularizers, which can smooth the loss landscape, into prompt tuning. We propose a new algorithm, called Prompt Tuning with Perturbation-based regularizer (PTP), which can not only alleviate training instability dramatically but also boost the performance of prompt tuning. We design two kinds of perturbation-based regularizers, including random-noise-based and adversarial-based. In particular, our proposed perturbations are flexible on both text space and embedding space. Extensive experiments show the effectiveness of our proposed methods in stabilizing the training. Our new algorithms improve the state-of-the-art prompt tuning methods by 1.94% and 2.34% on SuperGLUE and FewGLUE benchmarks, respectively.

2016

pdf
UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation
Peng Li | Heng Huang
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

pdf
UTA DLNLP at SemEval-2016 Task 12: Deep Learning Based Natural Language Processing System for Clinical Information Identification from Clinical Notes and Pathology Reports
Peng Li | Heng Huang
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)