Han Wang


2024

pdf
Chinese MentalBERT: Domain-Adaptive Pre-training on Social Media for Chinese Mental Health Text Analysis
Wei Zhai | Hongzhi Qi | Qing Zhao | Jianqiang Li | Ziqi Wang | Han Wang | Bing Yang | Guanghui Fu
Findings of the Association for Computational Linguistics ACL 2024

In the current environment, psychological issues are prevalent and widespread, with social media serving as a key outlet for individuals to share their feelings. This results in the generation of vast quantities of data daily, where negative emotions have the potential to precipitate crisis situations. There is a recognized need for models capable of efficient analysis. While pre-trained language models have demonstrated their effectiveness broadly, there’s a noticeable gap in pre-trained models tailored for specialized domains like psychology. To address this, we have collected a huge dataset from Chinese social media platforms and enriched it with publicly available datasets to create a comprehensive database encompassing 3.36 million text entries. To enhance the model’s applicability to psychological text analysis, we integrated psychological lexicons into the pre-training masking mechanism. Building on an existing Chinese language model, we performed adaptive training to develop a model specialized for the psychological domain. We evaluated our model’s performance across six public datasets, where it demonstrated improvements compared to eight other models. Additionally, in the qualitative comparison experiment, our model provided psychologically relevant predictions given the masked sentences. Due to concerns regarding data privacy, the dataset will not be made publicly available. However, we have made the pre-trained models and codes publicly accessible to the community via: https://github.com/zwzzzQAQ/Chinese-MentalBERT.

pdf
Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning
Zhaorui Yang | Tianyu Pang | Haozhe Feng | Han Wang | Wei Chen | Minfeng Zhu | Qian Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The surge in Large Language Models (LLMs) has revolutionized natural language processing, but fine-tuning them for specific tasks often encounters challenges in balancing performance and preserving general instruction-following abilities. In this paper, we posit that the distribution gap between task datasets and the LLMs serves as the primary underlying cause. To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT), a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution. Experimental results on the Llama-2-chat model across various benchmarks demonstrate that SDFT effectively mitigates catastrophic forgetting while achieving comparable or superior performance on downstream tasks compared to the vanilla fine-tuning. Moreover, SDFT demonstrates the potential to maintain the helpfulness and safety alignment of LLMs. Our code is available at https://github.com/sail-sg/sdft.

pdf
Soft Self-Consistency Improves Language Models Agents
Han Wang | Archiki Prasad | Elias Stengel-Eskin | Mohit Bansal
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generations from large language models (LLMs) can be improved by sampling and scoring multiple solutions to select a final answer. Current “sample and select” methods such as self-consistency (SC) rely on majority voting to score answers. However, when tasks have many distinct and valid answers, selection by voting requires a large number of samples. This makes SC prohibitively expensive for interactive tasks that involve generating multiple actions (answers) sequentially. After establishing that majority voting fails to provide consistent gains on such tasks, we demonstrate how to increase success rates by softening the scoring criterion. We introduce Soft Self-Consistency (SOFT-SC), which replaces SC’s discontinuous scoring with a continuous score computed from model likelihoods, allowing for selection even when actions are sparsely distributed. SOFT-SC improves both performance and efficiency on long-horizon interactive tasks, requiring half as many samples as SC for comparable or better performance. For a fixed number of samples, SOFT-SC leads to a 1.3% increase over SC in absolute success rate on writing bash programs, a 6.6% increase on online shopping (WebShop), and a 4.7% increase for an interactive household game (ALFWorld). Finally, we show that SOFT-SC can be applied to both open-source and black-box models.

2023

pdf
TLM: Token-Level Masking for Transformers
Yangjun Wu | Kebin Fang | Dongxiang Zhang | Han Wang | Hao Zhang | Gang Chen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Structured dropout approaches, such as attention dropout and DropHead, have been investigated to regularize the multi-head attention mechanism in Transformers. In this paper, we propose a new regularization scheme based on token-level rather than structure-level to reduce overfitting. Specifically, we devise a novel Token-Level Masking (TLM) training strategy for Transformers to regularize the connections of self-attention, which consists of two masking techniques that are effective and easy to implement. The underlying idea is to manipulate the connections between tokens in the multi-head attention via masking, where the networks are forced to exploit partial neighbors’ information to produce a meaningful representation. The generality and effectiveness of TLM are thoroughly evaluated via extensive experiments on 4 diversified NLP tasks across 18 datasets, including natural language understanding benchmark GLUE, ChineseGLUE, Chinese Grammatical Error Correction, and data-to-text generation. The results indicate that TLM can consistently outperform attention dropout and DropHead, e.g., it increases by 0.5 points relative to DropHead with BERT-large on GLUE. Moreover, TLM can establish a new record on the data-to-text benchmark Rotowire (18.93 BLEU). Our code will be publicly available at https://github.com/Young1993/tlm.

pdf
DeepMaven: Deep Question Answering on Long-Distance Movie/TV Show Videos with Multimedia Knowledge Extraction and Synthesis
Yi Fung | Han Wang | Tong Wang | Ali Kebarighotbi | Mohit Bansal | Heng Ji | Prem Natarajan
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Long video content understanding poses a challenging set of research questions as it involves long-distance, cross-media reasoning and knowledge awareness. In this paper, we present a new benchmark for this problem domain, targeting the task of deep movie/TV question answering (QA) beyond previous work’s focus on simple plot summary and short video moment settings. We define several baselines based on direct retrieval of relevant context for long-distance movie QA. Observing that real-world QAs may require higher-order multi-hop inferences, we further propose a novel framework, called the DeepMaven, which extracts events, entities, and relations from the rich multimedia content in long videos to pre-construct movie knowledge graphs (movieKGs), and at the time of QA inference, complements general semantics with structured knowledge for more effective information retrieval and knowledge reasoning. We also introduce our recently collected DeepMovieQA dataset, including 1,000 long-form QA pairs from 41 hours of videos, to serve as a new and useful resource for future work. Empirical results show the DeepMaven performs competitively for both the new DeepMovieQA and the pre-existing MovieQA dataset.

2022

pdf
Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
Han Wang | Canwen Xu | Julian McAuley
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Prompt-based learning (i.e., prompting) is an emerging paradigm for exploiting knowledge learned by a pretrained language model. In this paper, we propose Automatic Multi-Label Prompting (AMuLaP), a simple yet effective method to automatically select label mappings for few-shot text classification with prompting. Our method exploits one-to-many label mappings and a statistics-based algorithm to select label mappings given a prompt template. Our experiments demonstrate that AMuLaP achieves competitive performance on the GLUE benchmark without human effort or external resources.

pdf
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen Bach | Victor Sanh | Zheng Xin Yong | Albert Webson | Colin Raffel | Nihal V. Nayak | Abheesht Sharma | Taewoon Kim | M Saiful Bari | Thibault Fevry | Zaid Alyafeai | Manan Dey | Andrea Santilli | Zhiqing Sun | Srulik Ben-david | Canwen Xu | Gunjan Chhablani | Han Wang | Jason Fries | Maged Al-shaibani | Shanya Sharma | Urmish Thakker | Khalid Almubarak | Xiangru Tang | Dragomir Radev | Mike Tian-jian Jiang | Alexander Rush
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.

pdf
Language Model Pre-Training with Sparse Latent Typing
Liliang Ren | Zixuan Zhang | Han Wang | Clare Voss | ChengXiang Zhai | Heng Ji
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Modern large-scale Pre-trained Language Models (PLMs) have achieved tremendous success on a wide range of downstream tasks. However, most of the LM pre-training objectives only focus on text reconstruction, but have not sought to learn latent-level interpretable representations of sentences. In this paper, we manage to push the language models to obtain a deeper understanding of sentences by proposing a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types. Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge. Besides, the language model pre-trained with such an objective also significantly improves Information Extraction related downstream tasks in both supervised and few-shot settings. Our code is publicly available at https://github.com/renll/SparseLT.

pdf
Ask Question First for Enhancing Lifelong Language Learning
Han Wang | Ruiliu Fu | Xuejun Zhang | Jun Zhou | Qingwei Zhao
Proceedings of the 29th International Conference on Computational Linguistics

Lifelong language learning aims to stream learning NLP tasks while retaining knowledge of previous tasks. Previous works based on the language model and following data-free constraint approaches have explored formatting all data as “begin token (B) + context (C) + question (Q) + answer (A)” for different tasks. However, they still suffer from catastrophic forgetting and are exacerbated when the previous task’s pseudo data is insufficient for the following reasons: (1) The model has difficulty generating task-corresponding pseudo data, and (2) A is prone to error when A and C are separated by Q because the information of the C is diminished before generating A. Therefore, we propose the Ask Question First and Replay Question (AQF-RQ), including a novel data format “BQCA” and a new training task to train pseudo questions of previous tasks. Experimental results demonstrate that AQF-RQ makes it easier for the model to generate more pseudo data that match corresponding tasks, and is more robust to both sufficient and insufficient pseudo-data when the task boundary is both clear and unclear. AQF-RQ can achieve only 0.36% lower performance than multi-task learning.

pdf
Incorporating Instructional Prompts into a Unified Generative Framework for Joint Multiple Intent Detection and Slot Filling
Yangjun Wu | Han Wang | Dongxiang Zhang | Gang Chen | Hao Zhang
Proceedings of the 29th International Conference on Computational Linguistics

The joint multiple Intent Detection (ID) and Slot Filling (SF) is a significant challenge in spoken language understanding. Because the slots in an utterance may relate to multi-intents, most existing approaches focus on utilizing task-specific components to capture the relations between intents and slots. The customized networks restrict models from modeling commonalities between tasks and generalization for broader applications. To address the above issue, we propose a Unified Generative framework (UGEN) based on a prompt-based paradigm, and formulate the task as a question-answering problem. Specifically, we design 5-type templates as instructional prompts, and each template includes a question that acts as the driver to teach UGEN to grasp the paradigm, options that list the candidate intents or slots to reduce the answer search space, and the context denotes original utterance. Through the instructional prompts, UGEN is guided to understand intents, slots, and their implicit correlations. On two popular multi-intent benchmark datasets, experimental results demonstrate that UGEN achieves new SOTA performances on full-data and surpasses the baselines by a large margin on 5-shot (28.1%) and 10-shot (23%) scenarios, which verify that UGEN is robust and effective.

2021

pdf
Optimizing NLU Reranking Using Entity Resolution Signals in Multi-domain Dialog Systems
Tong Wang | Jiangning Chen | Mohsen Malmir | Shuyan Dong | Xin He | Han Wang | Chengwei Su | Yue Liu | Yang Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

In dialog systems, the Natural Language Understanding (NLU) component typically makes the interpretation decision (including domain, intent and slots) for an utterance before the mentioned entities are resolved. This may result in intent classification and slot tagging errors. In this work, we propose to leverage Entity Resolution (ER) features in NLU reranking and introduce a novel loss term based on ER signals to better learn model weights in the reranking framework. In addition, for a multi-domain dialog scenario, we propose a score distribution matching method to ensure scores generated by the NLU reranking models for different domains are properly calibrated. In offline experiments, we demonstrate our proposed approach significantly outperforms the baseline model on both single-domain and cross-domain evaluations.

pdf
Entity Resolution in Open-domain Conversations
Mingyue Shang | Tong Wang | Mihail Eric | Jiangning Chen | Jiyang Wang | Matthew Welch | Tiantong Deng | Akshay Grewal | Han Wang | Yue Liu | Yang Liu | Dilek Hakkani-Tur
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

In recent years, incorporating external knowledge for response generation in open-domain conversation systems has attracted great interest. To improve the relevancy of retrieved knowledge, we propose a neural entity linking (NEL) approach. Different from formal documents, such as news, conversational utterances are informal and multi-turn, which makes it more challenging to disambiguate the entities. Therefore, we present a context-aware named entity recognition model (NER) and entity resolution (ER) model to utilize dialogue context information. We conduct NEL experiments on three open-domain conversation datasets and validate that incorporating context information improves the performance of NER and ER models. The end-to-end NEL approach outperforms the baseline by 62.8% relatively in F1 metric. Furthermore, we verify that using external knowledge based on NEL benefits the neural response generation model.

pdf
Personalized Entity Resolution with Dynamic Heterogeneous KnowledgeGraph Representations
Ying Lin | Han Wang | Jiangning Chen | Tong Wang | Yue Liu | Heng Ji | Yang Liu | Premkumar Natarajan
Proceedings of the 4th Workshop on e-Commerce and NLP

The growing popularity of Virtual Assistants poses new challenges for Entity Resolution, the task of linking mentions in text to their referent entities in a knowledge base. Specifically, in the shopping domain, customers tend to mention the entities implicitly (e.g., “organic milk”) rather than use the entity names explicitly, leading to a large number of candidate products. Meanwhile, for the same query, different customers may expect different results. For example, with “add milk to my cart”, a customer may refer to a certain product from his/her favorite brand, while some customers may want to re-order products they regularly purchase. Moreover, new customers may lack persistent shopping history, which requires us to enrich the connections between customers through products and their attributes. To address these issues, we propose a new framework that leverages personalized features to improve the accuracy of product ranking. We first build a cross-source heterogeneous knowledge graph from customer purchase history and product knowledge graph to jointly learn customer and product embeddings. After that, we incorporate product, customer, and history representations into a neural reranking model to predict which candidate is most likely to be purchased by a specific customer. Experiment results show that our model substantially improves the accuracy of the top ranked candidates by 24.6% compared to the state-of-the-art product search model.

pdf
Retrieval Enhanced Model for Commonsense Generation
Han Wang | Yang Liu | Chenguang Zhu | Linjun Shou | Ming Gong | Yichong Xu | Michael Zeng
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Decomposing Complex Questions Makes Multi-Hop QA Easier and More Interpretable
Ruiliu Fu | Han Wang | Xuejun Zhang | Jun Zhou | Yonghong Yan
Findings of the Association for Computational Linguistics: EMNLP 2021

Multi-hop QA requires the machine to answer complex questions through finding multiple clues and reasoning, and provide explanatory evidence to demonstrate the machine’s reasoning process. We propose Relation Extractor-Reader and Comparator (RERC), a three-stage framework based on complex question decomposition. The Relation Extractor decomposes the complex question, and then the Reader answers the sub-questions in turn, and finally the Comparator performs numerical comparison and summarizes all to get the final answer, where the entire process itself constitutes a complete reasoning evidence path. In the 2WikiMultiHopQA dataset, our RERC model has achieved the state-of-the-art performance, with a winning joint F1 score of 53.58 on the leaderboard. All indicators of our RERC are close to human performance, with only 1.95 behind the human level in F1 score of support fact. At the same time, the evidence path provided by our RERC framework has excellent readability and faithfulness.

2020

pdf
Enhancing Generalization in Natural Language Inference by Syntax
Qi He | Han Wang | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2020

Pre-trained language models such as BERT have achieved the state-of-the-art performance on natural language inference (NLI). However, it has been shown that such models can be tricked by variations of surface patterns such as syntax. We investigate the use of dependency trees to enhance the generalization of BERT in the NLI task, leveraging on a graph convolutional network to represent a syntax-based matching graph with heterogeneous matching patterns. Experimental results show that, our syntax-based method largely enhance generalization of BERT on a test set where the sentence pair has high lexical overlap but diverse syntactic structures, and do not degrade performance on the standard test set. In other words, the proposed method makes BERT more robust on syntactic changes.

2015

pdf
Language and Domain Independent Entity Linking with Quantified Collective Validation
Han Wang | Jin Guang Zheng | Xiaogang Ma | Peter Fox | Heng Ji
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing