This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The amount of data to fine-tune LLMs plays a crucial role in the performance of these models in downstream tasks. Consequently, it is not straightforward to deploy these models in low-resource settings. In this work, we investigate two new multi-task learning data augmentation approaches for fine-tuning LLMs when little data is available: “In-domain Augmentation” of the training data and extracting “Drills” as smaller tasks from the target dataset. We evaluate the proposed approaches in three natural language processing settings in the context of SMM4H 2024 competition tasks: multi-class classification, entity recognition, and information extraction. The results show that both techniques improve the performance of the models in all three settings, suggesting a positive impact from the knowledge learned in multi-task training to perform the target task.
The increase in the prevalence of mental health problems has coincided with a growing popularity of health related social networking sites. Regardless of their therapeutic potential, on-line support groups (OSGs) can also have negative effects on patients. In this work we propose a novel methodology to automatically verify the presence of therapeutic factors in social networking websites by using Natural Language Processing (NLP) techniques. The methodology is evaluated on on-line asynchronous multi-party conversations collected from an OSG and Twitter. The results of the analysis indicate that therapeutic factors occur more frequently in OSG conversations than in Twitter conversations. Moreover, the analysis of OSG conversations reveals that the users of that platform are supportive, and interactions are likely to lead to the improvement of their emotional state. We believe that our method provides a stepping stone towards automatic analysis of emotional states of users of online platforms. Possible applications of the method include provision of guidelines that highlight potential implications of using such platforms on users’ mental health, and/or support in the analysis of their impact on specific individuals.
Dialogue Act (DA) tagging is crucial for spoken language understanding systems, as it provides a general representation of speakers’ intents, not bound to a particular dialogue system. Unfortunately, publicly available data sets with DA annotation are all based on different annotation schemes and thus incompatible with each other. Moreover, their schemes often do not cover all aspects necessary for open-domain human-machine interaction. In this paper, we propose a methodology to map several publicly available corpora to a subset of the ISO standard, in order to create a large task-independent training corpus for DA classification. We show the feasibility of using this corpus to train a domain-independent DA tagger testing it on out-of-domain conversational data, and argue the importance of training on multiple corpora to achieve robustness across different DA categories.