Daniel Baumartz


2024

pdf
Dependencies over Times and Tools (DoTT)
Andy Luecking | Giuseppe Abrami | Leon Hammerla | Marc Rahn | Daniel Baumartz | Steffen Eger | Alexander Mehler
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Purpose: Based on the examples of English and German, we investigate to what extent parsers trained on modern variants of these languages can be transferred to older language levels without loss. Methods: We developed a treebank called DoTT (https://github.com/texttechnologylab/DoTT) which covers, roughly, the time period from 1800 until today, in conjunction with the further development of the annotation tool DependencyAnnotator. DoTT consists of a collection of diachronic corpora enriched with dependency annotations using 3 parsers, 6 pre-trained language models, 5 newly trained models for German, and two tag sets (TIGER and Universal Dependencies). To assess how the different parsers perform on texts from different time periods, we created a gold standard sample as a benchmark. Results: We found that the parsers/models perform quite well on modern texts (document-level LAS ranging from 82.89 to 88.54) and slightly worse on older texts, as expected (average document-level LAS 84.60 vs. 86.14), but not significantly. For German texts, the (German) TIGER scheme achieved slightly better results than UD. Conclusion: Overall, this result speaks for the transferability of parsers to past language levels, at least dating back until around 1800. This very transferability, it is however argued, means that studies of language change in the field of dependency syntax can draw on dependency distance but miss out on some grammatical phenomena.

2023

pdf
Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI
Alexander Leonhardt | Giuseppe Abrami | Daniel Baumartz | Alexander Mehler
Findings of the Association for Computational Linguistics: EMNLP 2023

Automatic analysis of large corpora is a complex task, especially in terms of time efficiency. This complexity is increased by the fact that flexible, extensible text analysis requires the continuous integration of ever new tools. Since there are no adequate frameworks for these purposes in the field of NLP, and especially in the context of UIMA, that are not outdated or unusable for security reasons, we present a new approach to address the latter task: Docker Unified UIMA Interface (DUUI), a scalable, flexible, lightweight, and feature-rich framework for automatic distributed analysis of text corpora that leverages Big Data experience and virtualization with Docker. We evaluate DUUI’s communication approach against a state-of-the-art approach and demonstrate its outstanding behavior in terms of time efficiency, enabling the analysis of big text data.

2018

pdf
LTV: Labeled Topic Vector
Daniel Baumartz | Tolga Uslu | Alexander Mehler
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

In this paper we present LTV, a website and API that generates labeled topic classifications based on the Dewey Decimal Classification (DDC), an international standard for topic classification in libraries. We introduce nnDDC, a largely language-independent natural network-based classifier for DDC, which we optimized using a wide range of linguistic features to achieve an F-score of 87.4%. To show that our approach is language-independent, we evaluate nnDDC using up to 40 different languages. We derive a topic model based on nnDDC, which generates probability distributions over semantic units for any input on sense-, word- and text-level. Unlike related approaches, however, these probabilities are estimated by means of nnDDC so that each dimension of the resulting vector representation is uniquely labeled by a DDC class. In this way, we introduce a neural network-based Classifier-Induced Semantic Space (nnCISS).

pdf
FastSense: An Efficient Word Sense Disambiguation Classifier
Tolga Uslu | Alexander Mehler | Daniel Baumartz | Wahed Hemati
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf
TextImager as a Generic Interface to R
Tolga Uslu | Wahed Hemati | Alexander Mehler | Daniel Baumartz
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

R is a very powerful framework for statistical modeling. Thus, it is of high importance to integrate R with state-of-the-art tools in NLP. In this paper, we present the functionality and architecture of such an integration by means of TextImager. We use the OpenCPU API to integrate R based on our own R-Server. This allows for communicating with R-packages and combining them with TextImager’s NLP-components.