Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents which we refer to as LLM personas and present a case study with GPT-3.5 and GPT-4 to investigate whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we simulate distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas’ self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, LLM personas’ writings have emerging representative linguistic patterns for personality traits when compared with a human writing corpus. Furthermore, human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80%. Interestingly, the accuracy drops significantly when the annotators were informed of AI authorship.
Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants’ homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals’ empathy toward others’ stories based on their personal experiences, evaluated in two contexts: participants’ own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.
The most meaningful connections between people are often fostered through expression of shared vulnerability and emotional experiences in personal narratives. We introduce a new task of identifying similarity in personal stories based on empathic resonance, i.e., the extent to which two people empathize with each others’ experiences, as opposed to raw semantic or lexical similarity, as has predominantly been studied in NLP. Using insights from social psychology, we craft a framework that operationalizes empathic similarity in terms of three key features of stories: main events, emotional trajectories, and overall morals or takeaways. We create EmpathicStories, a dataset of 1,500 personal stories annotated with our empathic similarity features, and 2,000 pairs of stories annotated with empathic similarity scores. Using our dataset, we fine-tune a model to compute empathic similarity of story pairs, and show that this outperforms semantic similarity models on automated correlation and retrieval metrics. Through a user study with 150 participants, we also assess the effect our model has on retrieving stories that users empathize with, compared to naive semantic similarity-based retrieval, and find that participants empathized significantly more with stories retrieved by our model. Our work has strong implications for the use of empathy-aware models to foster human connection and empathy between people.
Recent state-of-the-art approaches in open-domain dialogue include training end-to-end deep-learning models to learn various conversational features like emotional content of response, symbolic transitions of dialogue contexts in a knowledge graph and persona of the agent and the user, among others. While neural models have shown reasonable results, modelling the cognitive processes that humans use when conversing with each other may improve the agent’s quality of responses. A key element of natural conversation is to tailor one’s response such that it accounts for concepts that the speaker and listener may or may not know and the contextual relevance of all prior concepts used in conversation. We show that a rich representation and explicit modeling of these psychological processes can improve predictions made by existing neural network models. In this work, we propose a novel probabilistic approach using Markov Random Fields (MRF) to augment existing deep-learning methods for improved next utterance prediction. Using human and automatic evaluations, we show that our augmentation approach significantly improves the performance of existing state-of-the-art retrieval models for open-domain conversational agents.