Cristian Berrio


2024

pdf
SPACE-IDEAS: A Dataset for Salient Information Detection in Space Innovation
Andres Garcia-Silva | Cristian Berrio | Jose Manuel Gomez-Perez
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Detecting salient parts in text using natural language processing has been widely used to mitigate the effects of information overflow. Nevertheless, most of the datasets available for this task are derived mainly from academic publications. We introduce SPACE-IDEAS, a dataset for salient information detection from innovation ideas related to the Space domain. The text in SPACE-IDEAS varies greatly and includes informal, technical, academic and business-oriented writing styles. In addition to a manually annotated dataset we release an extended version that is annotated using a large generative language model. We train different sentence and sequential sentence classifiers, and show that the automatically annotated dataset can be leveraged using multitask learning to train better classifiers.

2021

pdf
European Language Grid: A Joint Platform for the European Language Technology Community
Georg Rehm | Stelios Piperidis | Kalina Bontcheva | Jan Hajic | Victoria Arranz | Andrejs Vasiļjevs | Gerhard Backfried | Jose Manuel Gomez-Perez | Ulrich Germann | Rémi Calizzano | Nils Feldhus | Stefanie Hegele | Florian Kintzel | Katrin Marheinecke | Julian Moreno-Schneider | Dimitris Galanis | Penny Labropoulou | Miltos Deligiannis | Katerina Gkirtzou | Athanasia Kolovou | Dimitris Gkoumas | Leon Voukoutis | Ian Roberts | Jana Hamrlova | Dusan Varis | Lukas Kacena | Khalid Choukri | Valérie Mapelli | Mickaël Rigault | Julija Melnika | Miro Janosik | Katja Prinz | Andres Garcia-Silva | Cristian Berrio | Ondrej Klejch | Steve Renals
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Europe is a multilingual society, in which dozens of languages are spoken. The only option to enable and to benefit from multilingualism is through Language Technologies (LT), i.e., Natural Language Processing and Speech Technologies. We describe the European Language Grid (ELG), which is targeted to evolve into the primary platform and marketplace for LT in Europe by providing one umbrella platform for the European LT landscape, including research and industry, enabling all stakeholders to upload, share and distribute their services, products and resources. At the end of our EU project, which will establish a legal entity in 2022, the ELG will provide access to approx. 1300 services for all European languages as well as thousands of data sets.

2019

pdf
An Empirical Study on Pre-trained Embeddings and Language Models for Bot Detection
Andres Garcia-Silva | Cristian Berrio | José Manuel Gómez-Pérez
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Fine-tuning pre-trained language models has significantly advanced the state of art in a wide range of NLP downstream tasks. Usually, such language models are learned from large and well-formed text corpora from e.g. encyclopedic resources, books or news. However, a significant amount of the text to be analyzed nowadays is Web data, often from social media. In this paper we consider the research question: How do standard pre-trained language models generalize and capture the peculiarities of rather short, informal and frequently automatically generated text found in social media? To answer this question, we focus on bot detection in Twitter as our evaluation task and test the performance of fine-tuning approaches based on language models against popular neural architectures such as LSTM and CNN combined with pre-trained and contextualized embeddings. Our results also show strong performance variations among the different language model approaches, which suggest further research.