Chris Leberknight


2021

pdf bib
Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
Anna Feldman | Giovanni Da San Martino | Chris Leberknight | Preslav Nakov
Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

2020

pdf bib
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda
Giovanni Da San Martino | Chris Brew | Giovanni Luca Ciampaglia | Anna Feldman | Chris Leberknight | Preslav Nakov
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

2019

pdf bib
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda
Anna Feldman | Giovanni Da San Martino | Alberto Barrón-Cedeño | Chris Brew | Chris Leberknight | Preslav Nakov
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

pdf
Neural Network Prediction of Censorable Language
Kei Yin Ng | Anna Feldman | Jing Peng | Chris Leberknight
Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science

Internet censorship imposes restrictions on what information can be publicized or viewed on the Internet. According to Freedom House’s annual Freedom on the Net report, more than half the world’s Internet users now live in a place where the Internet is censored or restricted. China has built the world’s most extensive and sophisticated online censorship system. In this paper, we describe a new corpus of censored and uncensored social media tweets from a Chinese microblogging website, Sina Weibo, collected by tracking posts that mention ‘sensitive’ topics or authored by ‘sensitive’ users. We use this corpus to build a neural network classifier to predict censorship. Our model performs with a 88.50% accuracy using only linguistic features. We discuss these features in detail and hypothesize that they could potentially be used for censorship circumvention.

2018

pdf bib
Proceedings of the First Workshop on Natural Language Processing for Internet Freedom
Chris Brew | Anna Feldman | Chris Leberknight
Proceedings of the First Workshop on Natural Language Processing for Internet Freedom

pdf bib
Linguistic Characteristics of Censorable Language on SinaWeibo
Kei Yin Ng | Anna Feldman | Jing Peng | Chris Leberknight
Proceedings of the First Workshop on Natural Language Processing for Internet Freedom

This paper investigates censorship from a linguistic perspective. We collect a corpus of censored and uncensored posts on a number of topics, build a classifier that predicts censorship decisions independent of discussion topics. Our investigation reveals that the strongest linguistic indicator of censored content of our corpus is its readability.