This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
End-to-end automatic speech translation (AST) relies on data that combines audio inputs with text translation outputs. Previous work used existing large parallel corpora of transcriptions and translations in a knowledge distillation (KD) setup to distill a neural machine translation (NMT) into an AST student model. While KD allows using larger pretrained models, the reliance of previous KD approaches on manual audio transcripts in the data pipeline restricts the applicability of this framework to AST. We present an imitation learning approach where a teacher NMT system corrects the errors of an AST student without relying on manual transcripts. We show that the NMT teacher can recover from errors in automatic transcriptions and is able to correct erroneous translations of the AST student, leading to improvements of about 4 BLEU points over the standard AST end-to-end baseline on the English-German CoVoST-2 and MuST-C datasets, respectively. Code and data are publicly available: https://github.com/HubReb/imitkd_ast/releases/tag/v1.1
Increasingly larger datasets have become a standard ingredient to advancing the state-of-the-art in NLP. However, data quality might have already become the bottleneck to unlock further gains. Given the diversity and the sizes of modern datasets, standard data filtering is not straight-forward to apply, because of the multifacetedness of the harmful data and elusiveness of filtering rules that would generalize across multiple tasks. We study the fitness of task-agnostic self-influence scores of training examples for data cleaning, analyze their efficacy in capturing naturally occurring outliers, and investigate to what extent self-influence based data cleaning can improve downstream performance in machine translation, question answering and text classification, building up on recent approaches to self-influence calculation and automated curriculum learning.
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.
Training data for machine translation (MT) is often sourced from a multitude of large corpora that are multi-faceted in nature, e.g. containing contents from multiple domains or different levels of quality or complexity. Naturally, these facets do not occur with equal frequency, nor are they equally important for the test scenario at hand. In this work, we propose to optimize this balance jointly with MT model parameters to relieve system developers from manual schedule design. A multi-armed bandit is trained to dynamically choose between facets in a way that is most beneficial for the MT system. We evaluate it on three different multi-facet applications: balancing translationese and natural training data, or data from multiple domains or multiple language pairs. We find that bandit learning leads to competitive MT systems across tasks, and our analysis provides insights into its learned strategies and the underlying data sets.
Fine-grained control of machine translation (MT) outputs along multiple attributes is critical for many modern MT applications and is a requirement for gaining users’ trust. A standard approach for exerting control in MT is to prepend the input with a special tag to signal the desired output attribute. Despite its simplicity, attribute tagging has several drawbacks: continuous values must be binned into discrete categories, which is unnatural for certain applications; interference between multiple tags is poorly understood. We address these problems by introducing vector-valued interventions which allow for fine-grained control over multiple attributes simultaneously via a weighted linear combination of the corresponding vectors. For some attributes, our approach even allows for fine-tuning a model trained without annotations to support such interventions. In experiments with three attributes (length, politeness and monotonicity) and two language pairs (English to German and Japanese) our models achieve better control over a wider range of tasks compared to tagging, and translation quality does not degrade when no control is requested. Finally, we demonstrate how to enable control in an already trained model after a relatively cheap fine-tuning stage.
Recently more attention has been given to adversarial attacks on neural networks for natural language processing (NLP). A central research topic has been the investigation of search algorithms and search constraints, accompanied by benchmark algorithms and tasks. We implement an algorithm inspired by zeroth order optimization-based attacks and compare with the benchmark results in the TextAttack framework. Surprisingly, we find that optimization-based methods do not yield any improvement in a constrained setup and slightly benefit from approximate gradient information only in unconstrained setups where search spaces are larger. In contrast, simple heuristics exploiting nearest neighbors without querying the target function yield substantial success rates in constrained setups, and nearly full success rate in unconstrained setups, at an order of magnitude fewer queries. We conclude from these results that current TextAttack benchmark tasks are too easy and constraints are too strict, preventing meaningful research on black-box adversarial text attacks.
Most modern neural machine translation (NMT) systems rely on presegmented inputs. Segmentation granularity importantly determines the input and output sequence lengths, hence the modeling depth, and source and target vocabularies, which in turn determine model size, computational costs of softmax normalization, and handling of out-of-vocabulary words. However, the current practice is to use static, heuristic-based segmentations that are fixed before NMT training. This begs the question whether the chosen segmentation is optimal for the translation task. To overcome suboptimal segmentation choices, we present an algorithm for dynamic segmentation, that is trainable end-to-end and driven by the NMT objective. In an evaluation on four translation tasks we found that, given the freedom to navigate between different segmentation levels, the model prefers to operate on (almost) character level, providing support for purely character-level NMT models from a novel angle.
The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT output space seemingly contradicts the theoretical requirements for counterfactual learning. We show that counterfactual learning from deterministic bandit logs is possible nevertheless by smoothing out deterministic components in learning. This can be achieved by additive and multiplicative control variates that avoid degenerate behavior in empirical risk minimization. Our simulation experiments show improvements of up to 2 BLEU points by counterfactual learning from deterministic bandit feedback.
Bandit structured prediction describes a stochastic optimization framework where learning is performed from partial feedback. This feedback is received in the form of a task loss evaluation to a predicted output structure, without having access to gold standard structures. We advance this framework by lifting linear bandit learning to neural sequence-to-sequence learning problems using attention-based recurrent neural networks. Furthermore, we show how to incorporate control variates into our learning algorithms for variance reduction and improved generalization. We present an evaluation on a neural machine translation task that shows improvements of up to 5.89 BLEU points for domain adaptation from simulated bandit feedback.
In Machine Translation, it is customary to compute the model score of a predicted hypothesis as a linear combination of multiple features, where each feature assesses a particular facet of the hypothesis. The choice of a linear combination is usually justified by the possibility of efficient inference (decoding); yet, the appropriateness of this simple combination scheme to the task at hand is rarely questioned. In this paper, we propose an approach that replaces the linear scoring function with a non-linear scoring function. To investigate the applicability of this approach, we rescore n-best lists generated with a conventional machine translation engine (using a linear scoring function for generating its hypotheses) with a non-linear scoring function learned using the learning-to-rank framework. Moderate, though consistent, gains in BLEU are demonstrated on the WMT’10, WMT’11 and WMT’12 test sets.
The Quaero program is an international project promoting research and industrial innovation on technologies for automatic analysis and classification of multimedia and multilingual documents. Within the program framework, research organizations and industrial partners collaborate to develop prototypes of innovating applications and services for access and usage of multimedia data. One of the topics addressed is the translation of spoken language. Each year, a project-internal evaluation is conducted by DGA to monitor the technological advances. This work describes the design and results of the 2011 evaluation campaign. The participating partners were RWTH, KIT, LIMSI and SYSTRAN. Their approaches are compared on both ASR output and reference transcripts of speech data for the translation between French and German. The results show that the developed techniques further the state of the art and improve translation quality.