Agnieszka Falenska

Also published as: Agnieszka Faleńska


2024

pdf bib
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
Agnieszka Faleńska | Christine Basta | Marta Costa-jussà | Seraphina Goldfarb-Tarrant | Debora Nozza
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

pdf
What Can Go Wrong in Authorship Profiling: Cross-Domain Analysis of Gender and Age Prediction
Hongyu Chen | Michael Roth | Agnieszka Falenska
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Authorship Profiling (AP) aims to predict the demographic attributes (such as gender and age) of authors based on their writing styles. Ever-improving models mean that this task is gaining interest and application possibilities. However, with greater use also comes the risk that authors are misclassified more frequently, and it remains unclear to what extent the better models can capture the bias and who is affected by the models’ mistakes. In this paper, we investigate three established datasets for AP as well as classical and neural classifiers for this task. Our analyses show that it is often possible to predict the demographic information of the authors based on textual features. However, some features learned by the models are specific to datasets. Moreover, models are prone to errors based on stereotypes associated with topical bias.

pdf
Is there Gender Bias in Dependency Parsing? Revisiting “Women’s Syntactic Resilience”
Paul Go | Agnieszka Falenska
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

In this paper, we revisit the seminal work of Garimella et al. 2019, who reported that dependency parsers learn demographically-related signals from their training data and perform differently on sentences authored by people of different genders. We re-run all the parsing experiments from Garimella et al. 2019 and find that their results are not reproducible. Additionally, the original patterns suggesting the presence of gender biases fail to generalize to other treebank and parsing architecture. Instead, our data analysis uncovers methodological shortcomings in the initial study that artificially introduced differences into female and male datasets during preprocessing. These disparities potentially compromised the validity of the original conclusions.

pdf
Overview of the Shared Task on Machine Translation Gender Bias Evaluation with Multilingual Holistic Bias
Marta Costa-jussà | Pierre Andrews | Christine Basta | Juan Ciro | Agnieszka Falenska | Seraphina Goldfarb-Tarrant | Rafael Mosquera | Debora Nozza | Eduardo Sánchez
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

We describe the details of the Shared Task of the 5th ACL Workshop on Gender Bias in Natural Language Processing (GeBNLP 2024). The task uses dataset to investigate the quality of Machine Translation systems on a particular case of gender robustness. We report baseline results as well as the results of the first participants. The shared task will be permanently available in the Dynabench platform.

pdf
How to Translate SQuAD to German? A Comparative Study of Answer Span Retrieval Methods for Question Answering Dataset Creation
Jens Kaiser | Agnieszka Falenska
Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024)

pdf
Self-reported Demographics and Discourse Dynamics in a Persuasive Online Forum
Agnieszka Falenska | Eva Maria Vecchi | Gabriella Lapesa
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Research on language as interactive discourse underscores the deliberate use of demographic parameters such as gender, ethnicity, and class to shape social identities. For example, by explicitly disclosing one’s information and enforcing one’s social identity to an online community, the reception by and interaction with the said community is impacted, e.g., strengthening one’s opinions by depicting the speaker as credible through their experience in the subject. Here, we present a first thorough study of the role and effects of self-disclosures on online discourse dynamics, focusing on a pervasive type of self-disclosure: author gender. Concretely, we investigate the contexts and properties of gender self-disclosures and their impact on interaction dynamics in an online persuasive forum, ChangeMyView. Our contribution is twofold. At the level of the target phenomenon, we fill a research gap in the understanding of the impact of these self-disclosures on the discourse by bringing together features related to forum activity (votes, number of comments), linguistic/stylistic features from the literature, and discourse topics. At the level of the contributed resource, we enrich and release a comprehensive dataset that will provide a further impulse for research on the interplay between gender disclosures, community interaction, and persuasion in online discourse.

2023

pdf
How-to Guides for Specific Audiences: A Corpus and Initial Findings
Nicola Fanton | Agnieszka Falenska | Michael Roth
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Instructional texts for specific target groups should ideally take into account the prior knowledge and needs of the readers in order to guide them efficiently to their desired goals. However, targeting specific groups also carries the risk of reflecting disparate social norms and subtle stereotypes. In this paper, we investigate the extent to which how-to guides from one particular platform, wikiHow, differ in practice depending on the intended audience. We conduct two case studies in which we examine qualitative features of texts written for specific audiences. In a generalization study, we investigate which differences can also be systematically demonstrated using computational methods. The results of our studies show that guides from wikiHow, like other text genres, are subject to subtle biases. We aim to raise awareness of these inequalities as a first step to addressing them in future work.

2021

pdf
Assessing Gender Bias in Wikipedia: Inequalities in Article Titles
Agnieszka Falenska | Özlem Çetinoğlu
Proceedings of the 3rd Workshop on Gender Bias in Natural Language Processing

Potential gender biases existing in Wikipedia’s content can contribute to biased behaviors in a variety of downstream NLP systems. Yet, efforts in understanding what inequalities in portraying women and men occur in Wikipedia focused so far only on *biographies*, leaving open the question of how often such harmful patterns occur in other topics. In this paper, we investigate gender-related asymmetries in Wikipedia titles from *all domains*. We assess that for only half of gender-related articles, i.e., articles with words such as *women* or *male* in their titles, symmetrical counterparts describing the same concept for the other gender (and clearly stating it in their titles) exist. Among the remaining imbalanced cases, the vast majority of articles concern sports- and social-related issues. We provide insights on how such asymmetries can influence other Wikipedia components and propose steps towards reducing the frequency of observed patterns.

2020

pdf
GRAIN-S: Manually Annotated Syntax for German Interviews
Agnieszka Falenska | Zoltán Czesznak | Kerstin Jung | Moritz Völkel | Wolfgang Seeker | Jonas Kuhn
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present GRAIN-S, a set of manually created syntactic annotations for radio interviews in German. The dataset extends an existing corpus GRAIN and comes with constituency and dependency trees for six interviews. The rare combination of gold- and silver-standard annotation layers coming from GRAIN with high-quality syntax trees can serve as a useful resource for speech- and text-based research. Moreover, since interviews can be put between carefully prepared speech and spontaneous conversational speech, they cover phenomena not seen in traditional newspaper-based treebanks. Therefore, GRAIN-S can contribute to research into techniques for model adaptation and for building more corpus-independent tools. GRAIN-S follows TIGER, one of the established syntactic treebanks of German. We describe the annotation process and discuss decisions necessary to adapt the original TIGER guidelines to the interviews domain. Next, we give details on the conversion from TIGER-style trees to dependency trees. We provide data statistics and demonstrate differences between the new dataset and existing out-of-domain test sets annotated with TIGER syntactic structures. Finally, we provide baseline parsing results for further comparison.

pdf
Integrating Graph-Based and Transition-Based Dependency Parsers in the Deep Contextualized Era
Agnieszka Falenska | Anders Björkelund | Jonas Kuhn
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

Graph-based and transition-based dependency parsers used to have different strengths and weaknesses. Therefore, combining the outputs of parsers from both paradigms used to be the standard approach to improve or analyze their performance. However, with the recent adoption of deep contextualized word representations, the chief weakness of graph-based models, i.e., their limited scope of features, has been mitigated. Through two popular combination techniques – blending and stacking – we demonstrate that the remaining diversity in the parsing models is reduced below the level of models trained with different random seeds. Thus, an integration no longer leads to increased accuracy. When both parsers depend on BiLSTMs, the graph-based architecture has a consistent advantage. This advantage stems from globally-trained BiLSTM representations, which capture more distant look-ahead syntactic relations. Such representations can be exploited through multi-task learning, which improves the transition-based parser, especially on treebanks with a high ratio of right-headed dependencies.

2019

pdf
The (Non-)Utility of Structural Features in BiLSTM-based Dependency Parsers
Agnieszka Falenska | Jonas Kuhn
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Classical non-neural dependency parsers put considerable effort on the design of feature functions. Especially, they benefit from information coming from structural features, such as features drawn from neighboring tokens in the dependency tree. In contrast, their BiLSTM-based successors achieve state-of-the-art performance without explicit information about the structural context. In this paper we aim to answer the question: How much structural context are the BiLSTM representations able to capture implicitly? We show that features drawn from partial subtrees become redundant when the BiLSTMs are used. We provide a deep insight into information flow in transition- and graph-based neural architectures to demonstrate where the implicit information comes from when the parsers make their decisions. Finally, with model ablations we demonstrate that the structural context is not only present in the models, but it significantly influences their performance.

pdf
IMSurReal: IMS at the Surface Realization Shared Task 2019
Xiang Yu | Agnieszka Falenska | Marina Haid | Ngoc Thang Vu | Jonas Kuhn
Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)

We introduce the IMS contribution to the Surface Realization Shared Task 2019. Our submission achieves the state-of-the-art performance without using any external resources. The system takes a pipeline approach consisting of five steps: linearization, completion, inflection, contraction, and detokenization. We compare the performance of our linearization algorithm with two external baselines and report results for each step in the pipeline. Furthermore, we perform detailed error analysis revealing correlation between word order freedom and difficulty of the linearization task.

pdf
Dependency Length Minimization vs. Word Order Constraints: An Empirical Study On 55 Treebanks
Xiang Yu | Agnieszka Falenska | Jonas Kuhn
Proceedings of the First Workshop on Quantitative Syntax (Quasy, SyntaxFest 2019)

pdf
Head-First Linearization with Tree-Structured Representation
Xiang Yu | Agnieszka Falenska | Ngoc Thang Vu | Jonas Kuhn
Proceedings of the 12th International Conference on Natural Language Generation

We present a dependency tree linearization model with two novel components: (1) a tree-structured encoder based on bidirectional Tree-LSTM that propagates information first bottom-up then top-down, which allows each token to access information from the entire tree; and (2) a linguistically motivated head-first decoder that emphasizes the central role of the head and linearizes the subtree by incrementally attaching the dependents on both sides of the head. With the new encoder and decoder, we reach state-of-the-art performance on the Surface Realization Shared Task 2018 dataset, outperforming not only the shared tasks participants, but also previous state-of-the-art systems (Bohnet et al., 2011; Puduppully et al., 2016). Furthermore, we analyze the power of the tree-structured encoder with a probing task and show that it is able to recognize the topological relation between any pair of tokens in a tree.

2018

pdf
Moving TIGER beyond Sentence-Level
Agnieszka Falenska | Kerstin Eckart | Jonas Kuhn
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
German Radio Interviews: The GRAIN Release of the SFB732 Silver Standard Collection
Katrin Schweitzer | Kerstin Eckart | Markus Gärtner | Agnieszka Falenska | Arndt Riester | Ina Rösiger | Antje Schweitzer | Sabrina Stehwien | Jonas Kuhn
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2017

pdf
IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks
Anders Björkelund | Agnieszka Falenska | Xiang Yu | Jonas Kuhn
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

This paper presents the IMS contribution to the CoNLL 2017 Shared Task. In the preprocessing step we employed a CRF POS/morphological tagger and a neural tagger predicting supertags. On some languages, we also applied word segmentation with the CRF tagger and sentence segmentation with a perceptron-based parser. For parsing we took an ensemble approach by blending multiple instances of three parsers with very different architectures. Our system achieved the third place overall and the second place for the surprise languages.

pdf
A General-Purpose Tagger with Convolutional Neural Networks
Xiang Yu | Agnieszka Falenska | Ngoc Thang Vu
Proceedings of the First Workshop on Subword and Character Level Models in NLP

We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem; it performs well on artificially unnormalized texts.

pdf
Lexicalized vs. Delexicalized Parsing in Low-Resource Scenarios
Agnieszka Falenska | Özlem Çetinoğlu
Proceedings of the 15th International Conference on Parsing Technologies

We present a systematic analysis of lexicalized vs. delexicalized parsing in low-resource scenarios, and propose a methodology to choose one method over another under certain conditions. We create a set of simulation experiments on 41 languages and apply our findings to 9 low-resource languages. Experimental results show that our methodology chooses the best approach in 8 out of 9 cases.

2016

pdf
How to Train Dependency Parsers with Inexact Search for Joint Sentence Boundary Detection and Parsing of Entire Documents
Anders Björkelund | Agnieszka Faleńska | Wolfgang Seeker | Jonas Kuhn
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf
Stacking or Supertagging for Dependency Parsing – What’s the Difference?
Agnieszka Faleńska | Anders Björkelund | Özlem Çetinoğlu | Wolfgang Seeker
Proceedings of the 14th International Conference on Parsing Technologies

2014

pdf
Introducing the IMS-Wrocław-Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and Morpho-syntax meet Unlabeled Data
Anders Björkelund | Özlem Çetinoğlu | Agnieszka Faleńska | Richárd Farkas | Thomas Mueller | Wolfgang Seeker | Zsolt Szántó
Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages