Abstract
This paper describes CAiRE’s submission to the unsupervised machine translation track of the WMT’19 news shared task from German to Czech. We leverage a phrase-based statistical machine translation (PBSMT) model and a pre-trained language model to combine word-level neural machine translation (NMT) and subword-level NMT models without using any parallel data. We propose to solve the morphological richness problem of languages by training byte-pair encoding (BPE) embeddings for German and Czech separately, and they are aligned using MUSE (Conneau et al., 2018). To ensure the fluency and consistency of translations, a rescoring mechanism is proposed that reuses the pre-trained language model to select the translation candidates generated through beam search. Moreover, a series of pre-processing and post-processing approaches are applied to improve the quality of final translations.- Anthology ID:
- W19-5327
- Volume:
- Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)
- Month:
- August
- Year:
- 2019
- Address:
- Florence, Italy
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 275–282
- Language:
- URL:
- https://aclanthology.org/W19-5327
- DOI:
- 10.18653/v1/W19-5327
- Cite (ACL):
- Zihan Liu, Yan Xu, Genta Indra Winata, and Pascale Fung. 2019. Incorporating Word and Subword Units in Unsupervised Machine Translation Using Language Model Rescoring. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 275–282, Florence, Italy. Association for Computational Linguistics.
- Cite (Informal):
- Incorporating Word and Subword Units in Unsupervised Machine Translation Using Language Model Rescoring (Liu et al., WMT 2019)
- PDF:
- https://preview.aclanthology.org/ingest-2024-clasp/W19-5327.pdf