Paraphrase-Sense-Tagged Sentences

Anne Cocos, Chris Callison-Burch


Abstract
Many natural language processing tasks require discriminating the particular meaning of a word in context, but building corpora for developing sense-aware models can be a challenge. We present a large resource of example usages for words having a particular meaning, called Paraphrase-Sense-Tagged Sentences (PSTS). Built on the premise that a word’s paraphrases instantiate its fine-grained meanings (i.e., bug has different meanings corresponding to its paraphrases fly and microbe) the resource contains up to 10,000 sentences for each of 3 million target-paraphrase pairs where the target word takes on the meaning of the paraphrase. We describe an automatic method based on bilingual pivoting used to enumerate sentences for PSTS, and present two models for ranking PSTS sentences based on their quality. Finally, we demonstrate the utility of PSTS by using it to build a dataset for the task of hypernym prediction in context. Training a model on this automatically generated dataset produces accuracy that is competitive with a model trained on smaller datasets crafted with some manual effort.
Anthology ID:
Q19-1045
Volume:
Transactions of the Association for Computational Linguistics, Volume 7
Month:
Year:
2019
Address:
Cambridge, MA
Editors:
Lillian Lee, Mark Johnson, Brian Roark, Ani Nenkova
Venue:
TACL
SIG:
Publisher:
MIT Press
Note:
Pages:
714–728
Language:
URL:
https://aclanthology.org/Q19-1045
DOI:
10.1162/tacl_a_00295
Bibkey:
Cite (ACL):
Anne Cocos and Chris Callison-Burch. 2019. Paraphrase-Sense-Tagged Sentences. Transactions of the Association for Computational Linguistics, 7:714–728.
Cite (Informal):
Paraphrase-Sense-Tagged Sentences (Cocos & Callison-Burch, TACL 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-2024-clasp/Q19-1045.pdf