Syllable based DNN-HMM Cantonese Speech to Text System

Timothy Wong, Claire Li, Sam Lam, Billy Chiu, Qin Lu, Minglei Li, Dan Xiong, Roy Shing Yu, Vincent T.Y. Ng


Abstract
This paper reports our work on building up a Cantonese Speech-to-Text (STT) system with a syllable based acoustic model. This is a part of an effort in building a STT system to aid dyslexic students who have cognitive deficiency in writing skills but have no problem expressing their ideas through speech. For Cantonese speech recognition, the basic unit of acoustic models can either be the conventional Initial-Final (IF) syllables, or the Onset-Nucleus-Coda (ONC) syllables where finals are further split into nucleus and coda to reflect the intra-syllable variations in Cantonese. By using the Kaldi toolkit, our system is trained using the stochastic gradient descent optimization model with the aid of GPUs for the hybrid Deep Neural Network and Hidden Markov Model (DNN-HMM) with and without I-vector based speaker adaptive training technique. The input features of the same Gaussian Mixture Model with speaker adaptive training (GMM-SAT) to DNN are used in all cases. Experiments show that the ONC-based syllable acoustic modeling with I-vector based DNN-HMM achieves the best performance with the word error rate (WER) of 9.66% and the real time factor (RTF) of 1.38812.
Anthology ID:
L16-1610
Volume:
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
Month:
May
Year:
2016
Address:
Portorož, Slovenia
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
3856–3862
Language:
URL:
https://aclanthology.org/L16-1610
DOI:
Bibkey:
Cite (ACL):
Timothy Wong, Claire Li, Sam Lam, Billy Chiu, Qin Lu, Minglei Li, Dan Xiong, Roy Shing Yu, and Vincent T.Y. Ng. 2016. Syllable based DNN-HMM Cantonese Speech to Text System. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3856–3862, Portorož, Slovenia. European Language Resources Association (ELRA).
Cite (Informal):
Syllable based DNN-HMM Cantonese Speech to Text System (Wong et al., LREC 2016)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-2024-clasp/L16-1610.pdf