Divergent Token Metrics: Measuring degradation to prune away LLM components – and optimize quantization

Björn Deiseroth, Max Meuer, Nikolas Gritsch, Constantin Eichenberg, Patrick Schramowski, Matthias Aßenmacher, Kristian Kersting


Abstract
Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities. However, their ever-increasing size has raised concerns about their effective deployment and the need for LLM compression. This study introduces the Divergent Token Metrics (DTMs), a novel approach to assessing compressed LLMs, addressing the limitations of traditional perplexity or accuracy measures that fail to accurately reflect text generation quality. DTMs measure token divergences that allow deeper insights into the subtleties of model compression, in particular, when evaluating components’ impacts individually. Utilizing the First Divergent Token Metric (FDTM) in model sparsification reveals that 25% of all attention components can be pruned beyond 90% on the Llama-2 model family, still keeping SOTA performance. For quantization, FDTM suggests that more than 80% of parameters can be naively transformed to int8 without special outlier management. These evaluations indicate the necessity of choosing appropriate compressions for parameters individually—and that FDTM can identify those—while standard metrics result in deteriorated outcomes.
Anthology ID:
2024.naacl-long.377
Volume:
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6764–6783
Language:
URL:
https://aclanthology.org/2024.naacl-long.377
DOI:
10.18653/v1/2024.naacl-long.377
Bibkey:
Cite (ACL):
Björn Deiseroth, Max Meuer, Nikolas Gritsch, Constantin Eichenberg, Patrick Schramowski, Matthias Aßenmacher, and Kristian Kersting. 2024. Divergent Token Metrics: Measuring degradation to prune away LLM components – and optimize quantization. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 6764–6783, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
Divergent Token Metrics: Measuring degradation to prune away LLM components – and optimize quantization (Deiseroth et al., NAACL 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-2024-clasp/2024.naacl-long.377.pdf