From Linguistic Linked Data to Big Data

Dimitar Trajanov, Elena Apostol, Radovan Garabik, Katerina Gkirtzou, Dagmar Gromann, Chaya Liebeskind, Cosimo Palma, Michael Rosner, Alexia Sampri, Gilles Sérasset, Blerina Spahiu, Ciprian-Octavian Truică, Giedre Valunaite Oleskeviciene


Abstract
With advances in the field of Linked (Open) Data (LOD), language data on the LOD cloud has grown in number, size, and variety. With an increased volume and variety of language data, optimizations of methods for distributing, storing, and querying these data become more central. To this end, this position paper investigates use cases at the intersection of LLOD and Big Data, existing approaches to utilizing Big Data techniques within the context of linked data, and discusses the challenges and benefits of this union.
Anthology ID:
2024.lrec-main.661
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
7489–7502
Language:
URL:
https://aclanthology.org/2024.lrec-main.661
DOI:
Bibkey:
Cite (ACL):
Dimitar Trajanov, Elena Apostol, Radovan Garabik, Katerina Gkirtzou, Dagmar Gromann, Chaya Liebeskind, Cosimo Palma, Michael Rosner, Alexia Sampri, Gilles Sérasset, Blerina Spahiu, Ciprian-Octavian Truică, and Giedre Valunaite Oleskeviciene. 2024. From Linguistic Linked Data to Big Data. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 7489–7502, Torino, Italia. ELRA and ICCL.
Cite (Informal):
From Linguistic Linked Data to Big Data (Trajanov et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-2024-clasp/2024.lrec-main.661.pdf