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Abstract

Low-Rank Adaptation (LoRA) is a widespread parameter-efficient fine-tuning algorithm for large-scale language

models. It has been commonly accepted that LoRA mostly achieves promising results in single-task, low-resource

settings, and struggles to handle multi-task instruction tuning scenarios. In this paper, we conduct a systematic

study of LoRA on diverse tasks and rich resources with different learning capacities, examining its performance on

seen tasks during training and its cross-task generalization on unseen tasks. Our findings challenge the prevalent

assumption that the limited learning capacity will inevitably result in performance decline. In fact, our study reveals

that when configured with an appropriate rank, LoRA can achieve remarkable performance in high-resource and

multi-task scenarios, even comparable to that achieved through full fine-tuning. It turns out that the constrained

learning capacity encourages LoRA to prioritize conforming to instruction requirements rather than memorizing

specialized features of particular tasks or instances. This study reveals the underlying connection between learning

capacity and generalization capabilities for robust parameter-efficient fine-tuning, highlighting a promising direction

for the broader application of LoRA across various tasks and settings.
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1. Introduction

Instruction tuning aims to fine-tune language mod-
els on a collection of tasks described via instruc-
tions (Wei et al., 2022; Wang et al., 2022; Iyer
et al., 2022; Wang et al., 2023; Longpre et al.,
2023), which aligns the large-scale language mod-
els (LLMs) with human-like responses for the given
instruction. Due to the extensive computational
resources required to fully fine-tune LLMs, many
studies have adopted Low-Rank Adaptation (LoRA,
Hu et al. (2022)) methods for instruction tuning (Xu
et al., 2023; Cui et al., 2023; Zhang et al., 2023; Wu
et al., 2023). Specifically, LoRA introduces train-
able rank decomposition matrices into each layer of
the Transformer, and freezes the pre-trained model
weights, which significantly reducing the number of
trainable parameters for downstream tasks.
Due to the reduction of learnable parameters,

one common assumption is that the limited learn-
ing capacity will lead to performance decline (Ding
et al., 2023; Mundra et al., 2023; Zhang et al., 2023;
Wu et al., 2023; Sun et al., 2023). Consequently,
LoRA is primarily considered effective when data
resources are limited and tuning tasks are con-
strained (Chen et al., 2022; Pu et al., 2023; Fu et al.,
2023). However, the performance of LoRA with
large learning capacities in scenarios with diverse
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tasks and abundant resources remains unexplored.

In this paper, we aim to bridge this research gap
by conducting a systematic investigation of LoRA in
instruction tuning scenarios. We evaluate the per-
formance of LoRA across diverse tasks and rich re-
sources with different learning capacities achieved
by adjusting the number of trainable parameters.
Specifically, we vary the trainable parameters of
LoRA by altering its intrinsic ranks, and control task
diversity by changing the number of learning tasks.
The effectiveness is evaluated for both intra-task
performance on learned tasks and inter-task perfor-
mance on unseen tasks. The experimental results
reveal the following findings:

• LoRA can achieve remarkable performance in
high-resource, multi-task settings. As demon-
strated in Figure 1, when configured with an
appropriate rank, LoRA can achieve perfor-
mance comparable to or even surpass those of
full fine-tuning. This finding challenges the pre-
vious assumption that LoRA is primarily suited
for low-resource and constrained task scenar-
ios, broadening the applicability of LoRA.

• Besides parameter-efficiency, LoRA may fur-
ther bring the benefit of implicit regularization.
We observe that LoRA consistently exhibits
improved performance as its learning capacity
increases. Even with a high learning capac-
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Figure 1: Scaling trends of intra-task (left) and inter-task (right) generalization capabilities of LLaMA-
7B as a function of learning capacity across varying task diversity. Models fine-tuned using LoRA are
represented by solid lines, while fully tuned models are denoted by dashed horizontal lines. Models are
tuned on 100, 250, 500, and 756 tasks from NIv2 dataset (Wang et al., 2022), respectively.

ity (rank≥ 210), LoRA maintains robust cross-
task generalization performance compared to
full fine-tuning. We assume that there exists
implicit regularization within LoRA, which re-
duces overfitting to seen tasks and improves
the generalization ability on unseen tasks.

• Only when LoRA attains sufficient learning ca-
pacity can it effectively grasp the semantics
of the task instructions. As shown in Figure 1,
when the learning capacity is limited, in con-
trast to the noticeable improvement in the task-
solving capability for seen tasks, increasing
the intrinsic rank of LoRA does not significantly
enhance performance on unseen tasks. We
observe that the constrained learning capac-
ity prompts LoRA to prioritize adhering to the
output form specified in the instruction, but
LoRAmay struggle to accurately solve the task.
Therefore, only when the learning capacity is
sufficiently large can LoRA effectively under-
stand the semantics of instructions, thereby
enhancing the performance on unseen tasks.

In summary, our findings challenge the common
assumption that limited learning capacity will result
in a decline in performance. We discover that LoRA
can achieve both promising intra- and inter-task
generalization performance. It appears that with
limited learning capacity, LoRA tends to prioritize
generating outputs that align with the instruction
requirements but may lack accuracy. This study
enhances our understandings of the application
scope and influence factors of LoRA, therefore rais-
ing the opportunity to employ LoRA across a wider
range of tasks and settings.

2. Background

2.1. Instruction Tuning

Instruction Tuning Problem. Instruction tuning
aims to align LLMs with human-like natural lan-

guage instructions. As illustrated in Figure 2, an
instruction dataset can be formally defined as D =

{(I(t), x
(t)
i , y

(t)
i ), t ∈ T}, where t represents a spe-

cific task within the task set T , I(t) denotes the nat-
ural language instruction for task t, x

(t)
i represents

the input, and y
(t)
i represents the target associated

with input x
(t)
i under task t. The primary objective

of instruction tuning is to enable a LLMM to gen-

erate the appropriate response given (I(t), x
(t)
i ), as

depicted in the right part of Figure 2.
Instruction Tuning with LoRA. To achieve com-
parable performance to full-parameter fine-tuning
while significantly reducing the computational re-
quirements, one notable representative method is
LoRA(Hu et al., 2022). Inspired by Aghajanyan et al.
(2021), LoRA hypothesizes that the updates to the
weights have a low “intrinsic rank” during adapta-
tion. Parameter update for a pre-trained weight
matrix W0 ∈ R

d×k in LoRA is decomposed into a
product of two low-rank matrices:

h =W0x+∆Wx =W0x+BAx

where B ∈ R
d×r, A ∈ R

r×k, and the rank r ≪
min(d, k). During training,W0 is frozen and does
not receive gradient updates, while A and B con-
tain trainable parameters. A is initialized using a
random Gaussian initialization technique, whereas
matrix B is initialized as a zero matrix, so the ini-
tial value of ∆W = BA is zero at the beginning of
training. It’s worth noting that ∆Wx is scaled by
α/r, and a higher α value assigns more weight to
the LoRA activations.

2.2. Experimental Settings

Dataset. We adopt the English portion of the
SUPER-NATURALINSTRUCTION (NIv2) dataset
(Wang et al., 2022) as our benchmark, which con-
tains 757 training tasks and 119 unseen test tasks
covering a diverse range of task types. The de-
fault instruction schema of NIv2 is composed of
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Instruction Tuning

You're given a sentence and your 

task is to generate another 

sentence which express same 

meaning as the input using 

different words.

Instruction

However, it is likely to be well 

above the eu average.

Input

However, the impact is likely to 

exceed the eu average.

Target

Paraphrasing

Question Answering

Information Extraction

…

The task is to classify a sentence 

as "POS" if the sentiment of the 

sentence is positive or as "NEG" 

if the sentiment of the sentence 

is negative.

Instruction

What I saw , I enjoyed.

Input

POS

Target

Sentiment Analysis

Seen

Tasks

Inter-task Generalization

Read the passage and find the corresponding 

person for the given pronoun. The word 

between ** ** is the target pronoun.

Instruction

Pat Magnum is the main character of an 

Italian comics. **He** is depicted as a dark 

curly-haired private.

Input

Pat Magnum.

Model Response

Coreference Resolution

Textual Entailment

Data to Text

…

Unseen

Tasks

Intra-task Generalization

The task is to classify a sentence as 

"POS" if the sentiment of the sentence is 

positive or as "NEG" if the sentiment of 

the sentence is negative.

Instruction

A fast-paced, glitzy but extremely silly 

piece.

Input

NEG

Model Response

Sentiment Analysis

Question Answering

Information Extraction

…

Seen

Tasks

Figure 2: Overview of instruction tuning and model generalization. Instruction tuning aligns large language
models with human-like natural language instructions across various tasks. After instruction tuning, the
model is expected to adapt to various scenarios across different domains. In this study, we consider
the model’s ability to perform tasks included in the training stage as intra-task generalization, while its
capability to handle tasks not encountered during training is considered as inter-task generalization.

the following components: task definition, positive
examples and negative examples. In our experi-
ments, we adopt task definitions alone as the task
instructions, without any demonstration examples.

Tuning on Varying Training Task. To evaluate
the performance of LoRA with varying learning ca-
pacities across different levels of task diversity, we
construct the training set Ttrain, which consists of
four datasets T100, T250, T500 and Tall. Specifically,
we sample 100/250/500/all tasks from the official
training tasks in NIv2 and then select 100 exam-
ples from each of these tasks. Task sampling is
conducted in proportion to the distribution of task
categories within the NIv2 dataset. It’s worth noting
that the four training datasets are inclusive, mean-
ing that each dataset contains all the training data
from the preceding dataset. For instance, T250 in-
cludes all the training data present in T100, and so
forth. To ensure the robustness and reliability of
our findings, we perform three rounds of sampling,
resulting in three distinct training sets Ttrain.

Evaluation on Intra- and Inter-tasks. In our ex-
perimental setup, the evaluation task set is further
divided into two distinct subsets: Tseen and Tunseen.
The former, Tseen, includes the tasks that have been
encountered during the instruction tuning stage,
and is used to evaluate the intra-task performance
of the instruction-tuned modelM

′

. Formally, the
intra-task test set can be denoted as Dtest-seen =
{(I(t), x

(t)
i , y

(t)
i ), t ∈ Tseen}. It evaluates the mem-

orization capabilities ofM
′

, measuring how effec-
tively the model performs on the seen tasks dur-
ing training. Conversely, Tunseen includes the tasks
that were not encountered during training, serving
to measure the cross-task generalization perfor-
mance ofM

′

. The inter-task test set can be de-
noted asDtest-unseen = {(I

(t), x
(t)
i , y

(t)
i ), t ∈ Tunseen}.

It measures the ability ofM
′

to generalize across
different unseen tasks. Specifically, we utilize the
official test split of NIv2, which consists of 119 un-
seen test tasks, and select 100 balanced test sam-
ples for each task to construct the inter-task test
set. To construct the intra-task test set, each task
within T100 contributes 100 examples, resulting in
a total of 10,000 examples. It is ensured that all
examples used for testing do not overlap with the
corresponding training set.

2.3. Details about Model Fine-tuning

Considering the remarkable performance of LLaMA
(Touvron et al., 2023a) on various English bench-
marks and the widespread application of its LoRA
version (Wu et al., 2023; Cui et al., 2023; Xu et al.,
2023; Zhang et al., 2023), we utilize the LLaMA-
7B to conduct our experiments. Specifically, we
adopt the LoRA fine-tuning code on LLaMA, which
is publicly available1. We update four weight matri-
ces (Wq,Wv,Wk, andWo) within the self-attention
module, with varying ranks from 4 to 4096. The
value of α is set to twice the rank, and the dropout
rate is consistently maintained at 0.05.

During instruction tuning process, we fine-tune
LLaMA for 6 epochs, employing a learning rate of
5e-5 with a linear schedule for LoRA, and a learn-
ing rate of 3e-5 with a cosine schedule for full fine-
tuning. In both cases, we choose AdamW (Kingma
and Ba, 2015) as the optimizer, and set the training
batch size to 128. For evaluation, following Wang
et al. (2022), we employ both Exact Match accuracy
and Rouge-L scores (Lin, 2004) to assess the per-
formance. We report average scores across three

1https://github.com/tloen/alpaca-lora
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T100 T250 T500 Tall

Rank Trainable EM R-L EM R-L EM R-L EM R-L

LoRA

4 0.062% 29.86 43.59 30.97 45.43 32.70 47.45 32.56 47.63
8 0.124% 31.28 45.84 33.91 49.07 35.01 50.41 35.11 50.71
16 0.248% 34.37 49.75 35.93 51.53 37.13 52.86 37.46 53.77
32 0.496% 37.81 53.49 38.30 54.66 39.21 55.39 40.99 57.32
64 0.986% 39.05 54.87 40.35 56.42 41.72 57.83 43.42 59.14

LoRA

128 1.953% 40.94 56.60 42.48 58.33 44.23 60.07 45.73 61.21
256 3.831% 43.70 59.29 45.17 60.62 47.51 62.80 48.44 63.60
512 7.379% 45.80 61.19 47.76 62.81 48.82 63.75 49.92 64.52
1024 13.745% 47.75 62.79 49.04 63.59 50.46 64.94 51.60 65.42
2048 24.167% 49.46 64.01 50.40 64.73 51.78 65.70 52.66 66.26
4096 38.927% 50.55 64.74 51.28 65.50 52.91 66.60 53.36 66.87

Full Fine-tuning 51.57 64.70 52.10 65.02 52.78 65.68 53.77 66.22

Table 1: Exact match (EM) and Rouge-L (R-L) scores on the intra-task test set of LoRA with varying
ranks and Full Fine-tuning. The intra-task test set consists of examples from tasks included in T100 but not
overlapping with the corresponding training set. All reported results represent the average performance
across three distinct training sets.

T100 T250 T500 Tall

Rank Trainable EM R-L EM R-L EM R-L EM R-L

LoRA

4 0.062% 23.75 39.25 24.98 40.07 25.32 41.14 25.96 42.22
8 0.124% 23.95 39.16 25.14 40.44 24.99 41.13 25.98 42.63
16 0.248% 23.77 39.84 25.07 40.85 26.30 42.51 25.69 42.46
32 0.496% 23.48 39.86 25.30 41.48 25.96 42.45 26.25 43.07
64 0.986% 24.41 40.33 24.85 41.19 26.52 43.28 26.69 43.37

LoRA

128 1.953% 24.65 41.33 26.15 42.68 26.58 43.48 27.48 44.41
256 3.831% 24.82 41.50 26.22 42.78 27.95 44.70 28.06 44.75
512 7.379% 25.40 42.09 26.27 43.20 28.04 45.15 28.79 45.53
1024 13.745% 25.73 42.55 27.22 44.19 28.45 45.66 29.74 46.96
2048 24.167% 25.58 42.45 27.94 44.57 29.20 46.22 30.66 47.87
4096 38.927% 26.38 42.64 27.76 44.14 30.05 46.97 31.12 48.36

Full Fine-tuning 23.77 37.77 26.74 42.21 28.85 45.12 30.58 46.71

Table 2: Exact match (EM) and Rouge-L (R-L) scores on the inter-task test set of LoRA with varying ranks
and Full Fine-tuning. The inter-task test set comprises 119 unseen test tasks drawn from the official test
split of NIv2. All results reported are the average performance across three distinct training sets.

samplings training sets to ensure the robustness
and reliability of our results. All experiments are
conducted on NVIDIA A100-80GB GPUs.

3. LoRA for Instruction Tuning

In this section, we systematically investigate the
relationship between the learning capacity and gen-
eralization performance of LLMs. To achieve this,
we vary the trainable parameters within LoRA and
adjust the number of learning tasks during the in-
struction tuning process. Then we evaluate both
intra-task performance on learned tasks and inter-
task performance on unseen tasks of instruction-
tuned models. Table 1 and Table 2 present the

Exact match (EM) and Rouge-L (R-L) scores on
the intra-task test set and inter-task test set, respec-
tively. Furthermore, we analyze the differences in
output patterns between LoRA and full fine-tuning
on general tasks. Outputs of LoRA and fully fine-
tuned models on representative tasks are shown in
Figure 3. Exact match scores and the percentage
of out-of-options (OOP) outputs on classification
tasks within the inter-task test set are illustrated in
Figure 4.

3.1. LoRA can Beat Full Fine-tuning

Finding 1: LoRA can achieve remarkable intra-task
and inter-task generalization performance in high-
resource, multi-task settings with an appropriate
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Instruction: Two analogies that relate 

items to the associated containers is 

given in the form "A : B. C : ?". "A : B" 

relates item A to its associated container 

B. Your task is to replace the question 

mark (?) with the appropriate container

for the given item C, following the "A : 

B" relation.

Input: diapers : box. carrots : ?

Golden Answer: bag

Full Fine-tuning: A : B

LoRA (rank = 16):  bag

LoRA (rank = 2048):  bag

Instruction: The task is to write a full 

sentence or two using all of the given 

information. Use all of the information 

provided.

Input: name[xname], cuisine[Chinese], 

rating[average], location[city centre]

Golden Answer:  xname serves average 

Chinese food in the city centre.

Full Fine-tuning: name[xname], 

cuisine[Chinese], rating[average], 

location[city centre]

LoRA (rank = 16):  (nothing)

LoRA (rank = 2048):  The food at xname

was average Chinese.

Word Analogy Dialogue Act Recognition Data to Text

Instruction: […]Given a prompt and two 

responses, identify which response is the 

type of "yes, and". Indicate your answer 

by 'Response 1' if the first response is 

correct, otherwise 'Response 2'. […]

Input: Prompt: You know this cockroach?

Response 1: I thought he died, so maybe 

we see his ghost? I guess there's no point 

in speculating.

Response 2: Yeah, he was here when I 

founded the place.

Golden Answer: Response 2

Full Fine-tuning: No

LoRA (rank = 16): Response 1

LoRA (rank = 2048): Response 2

Figure 3: Case studies for instruction models trained on Tall using Full Fine-tuning and LoRA. Descriptions
of the task output form are underscored, and the specific output type is denoted in italics. The model’s
incorrect answers are highlighted in red, while the correct part of the output is in blue.

rank.

Previous research in instruction tuning typically
constrained the rank of LoRA within the range of
8 to 64 (Zhang et al., 2023; Wu et al., 2023; Xu
et al., 2023; Cui et al., 2023). Meanwhile, one com-
mon perspective is that LoRA is primarily effective
for low-resource and constrained task scenarios
(Chen et al., 2022; Pu et al., 2023; Fu et al., 2023).
However, our experimental results deviate from this
viewpoint. Surprisingly, we observe that even when
fine-tuned on NIv2 that consists of over 75,000 ex-
amples across 756 tasks, LoRA with an appropri-
ate rank, such as 2048 and 4096, exhibits remark-
able intra-task and inter-task generalization perfor-
mance. This observation challenges the previous
opinion that the effectiveness of LoRA is primarily
limited to low-resource and limited tasks scenarios,
thereby expanding the applicability of LoRA.

Finding 2: LoRA can achieve performance com-
parable to or even surpass those of full fine-tuning.

Due to the reduction in the number of learnable
parameters, one common assumption is that the
constrained learning capacity could lead to a de-
cline in performance (Ding et al., 2023; Mundra
et al., 2023; Zhang et al., 2023; Wu et al., 2023).
In line with these studies, we observe that when
configured with learnable parameters less than 1%,
the intra-task generalization performance of LoRA
exhibits a decline of near 10 points compared to full
fine-tuning. This performance limitation can be at-
tributed to the restricted learning capacity of LoRA,
which hinders its ability to effectively recognize and
grasp task-specific features.

However, our experimental results also demon-
strate that LoRA can achieve comparable or even
superior intra-task and inter-task generalization per-
formance compared to full fine-tuning. As shown
in Table 1, the generalization capability of LoRA

continues to improve with an increase in its learning
capacity. Ultimately, when configured with a rank
of 4096, LoRA achieves intra-task generalization
performance comparable to that of full fine-tuning.
Similarly, when evaluating the inter-task generaliza-
tion ability, LoRA with a rank of 2048 surpasses full
fine-tuning across different levels of task diversity,
demonstrating improved Exact Match and Rouge-L
scores. It’s worth noting that while increasing the
rank of LoRA results in a higher computational de-
mand, it is still far less than that required for full
fine-tuning. For example, when the rank of LoRA
is set to 2048, the model can still be fine-tuned on
a single A100-80GB GPU. Therefore, how to se-
lect the optimal rank based on task complexity and
available resources deserves further investigation.

Moreover, we observe that, for some challenging
unseen tasks, LoRA with an appropriate rank ex-
hibits relatively better instruction understanding ca-
pabilities compared to full fine-tuning. For instance,
as shown in Figure 3 for the Data to Text task, mod-
els are expected to generate complete sentences
that incorporate all the provided input information.
In practice, fully tuned models often duplicate the
provided input as their output. However, LoRA with
a rank of 2048 makes efforts to construct sentences
based on the provided information, resulting in flu-
ent sentences that include expected keywords such
as “xname”, “average” and “Chinese”.

3.2. LoRA is not only Parameter-Efficient

Finding 1: LoRA shows strong robustness in terms
of generalization ability. As the learning capacity of
the model grows, the generalization performance of
LoRA is consistently blessed with an enhancement.

As presented in Table 1, when evaluated on the
intra-task test set, LoRA consistently exhibits im-
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proved performance as the learning capacity in-
creases. Similarly, Table 2 demonstrates that in-
creasing the number of trainable parameters within
LoRA consistently enhances its inter-task general-
ization capability. Ultimately, with a rank of 4096,
LoRA outperforms full fine-tuning on both learned
tasks and unseen tasks.

Additionally, we observe that the enhanced learn-
ing capacity of LoRA usually leads to improved
task-solving capabilities across diverse domains.
In particular, in classification tasks with multiple op-
tions, LoRAwith a relatively low rank tends to output
the same option regardless of the input. However,
when equipped with sufficient learning capacity, as
shown in Figure 4, LoRA learns to generate more
balanced outputs to improve the accuracy on clas-
sification tasks. Moreover, for some challenging
generation tasks such as Data to Text in Figure 3,
LoRA with limited learning capacity often produce
nothing or fragmented sentences. As the intrin-
sic rank increases, LoRA exhibits enhanced task-
solving capabilities to generate fluent sentences
covering more provided information.

Finding 2: LoRA exhibits an implicit regularization
effect.

Fully fine-tuned models excels at solving tasks
encountered during training, but their performance
on unseen tasks, especially those significantly dif-
fering from training tasks, is suboptimal. In con-
trast, as we increase the rank of LoRA, we observe
that there is no significant decline in generalization
performance across different levels of task diver-
sity. With the increase in learning capacity, LoRA
demonstrates effective problem-solving abilities for
both seen and unseen tasks. Notably, the gener-
alization performance of LoRA with learnable pa-
rameters exceeding 20% remains robust against
overfitting, even when the number of learning tasks
is relatively limited.

We observe that when dealing with unseen tasks
that markedly differ from those encountered during
training, fully tuned models may generate inaccu-
rate responses due to a lack of understanding of
task instructions. In contrast, models fine-tuned
using LoRA demonstrate relatively stronger instruc-
tion understanding capabilities and exhibit better
generalization performance for such unseen tasks.
An illustrative example is the Word Analogy task
shown in Figure 3, where fully tuned models strug-
gle to comprehend the instruction to produce words
based on the provided set of phrases. Instead, they
generate outputs like “A” or “B”, or directly copy a
word from the input. Conversely, LoRA demon-
strates an ability to grasp the task instruction and
attempts to generate appropriate words.

These observations imply the implicit regulariza-
tion within LoRA, which reduces overfitting to the
seen tasks and improves the generalization ability
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Figure 4: Exact Match (EM) scores and the percent-
age of out-of-options (OOP) outputs from LoRA
with varying ranks and Full Fine-tuning on repre-
sentative classification tasks within the inter-task
test set. Models are fine-tuned on Tall and all re-
sults reported are the average performance across
three distinct training sets.

on unseen tasks. We hypothesize that the con-
strained learning capacity in LoRA might prompt
it to prioritize capturing task-independent patterns
and representations. Consequently, this may equip
LoRA with enhanced instruction understanding and
following capabilities, enabling it to generalize more
effectively across diverse tasks.

3.3. Balancing Form and Semantic
Accuracy in LoRA

Finding 1: Learning to conform to the task output
format and learning to accurately solve the task are
two tasks with different levels of complexity.

Even when configured with fewer than 1% of the
learnable parameters, LoRA exhibits cross-task
generalization performance comparable to full fine-
tuning. We observe that this is largely attributed
to the fact that fully fine-tuned models sometimes
generate responses that are semantically correct
but deviate from the prescribed format. In contrast,
models fine-tuned using LoRA tend to generate out-
puts that align with the instruction requirements but
may lack accuracy. This observation suggests that
learning to conform to the task output format and
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learning to accurately solve the task are two tasks
with different levels of complexity. The high scores
on unseen tasks achieved by LoRA may be largely
attributed to the high formal accuracy of its outputs,
and this does not necessarily indicate that LoRA
has acquired the ability to effectively address the
task. This trend is observable in Figure 4, where
the percentage of out-of-options outputs from LoRA
is significantly lower than that of full fine-tuning on
most classification tasks within the inter-task test
set. However, the tendency of full fine-tuning mod-
els to producemore out-of-option outputs cannot be
taken as an indication of overfitting. As illustrated in
Figure 4, there is still a noticeable performance gap
between the Exact Match scores achieved by full
fine-tuning and LoRA with limited learning capacity.
This suggests that LoRA prioritizes adhering to the
output form required by the instruction, but may
struggle to solve the task accurately due to limited
learning capacity.

An illustrative example is the Dialogue Act Recog-
nition task shown in Figure 3. When the instruc-
tion requires the model to output “Response 1” or
“Response 2” to select an appropriate response,
fully tuned models often output “yes/no” or sim-
ply “1/2”, indicating a tendency to provide answers
that are not among the given options. Unlike full
fine-tuning, LoRA even with a rank of 16 learns
to follow the instruction to generate responses be-
tween “Response 1” and “Response 2”. However,
LoRA may often produce incorrect options due to
its constrained learning capacity.

Finding 2: Only when LoRA attains sufficient learn-
ing capacity can it effectively grasp the semantics
of the task instructions.

When the learning capacity is limited, in contrast
to the noticeable improvement in the task-solving
capability for seen tasks, increasing the intrinsic
rank of LoRA does not significantly enhance perfor-
mance on unseen tasks. We assume the primary
reason for this phenomenon is that the constrained
learning capacity causes LoRA to prioritize adher-
ing to the output form required in the instruction,
but it may struggle to accurately solve the task.
Therefore, only when LoRA attains sufficient learn-
ing capacity can it effectively understand the se-
mantics of the instructions, thereby enhancing the
performance on unseen tasks.

This tendency is particularly evident in classifica-
tion tasks, where LoRA can effectively follow the
instructions to generate outputs from the provided
options in most scenarios. However, when con-
figured with constrained learning capacity, LoRA
tends to produce the same option for different in-
puts within the same task. As shown in Figure 4, it’s
only when the learning capacity is sufficiently large
that LoRA can effectively understand the semantics
of instructions and options, achieving both formal
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Figure 5: Exact Match and Rouge-L scores of LoRA
and Full Fine-tuning on the intra-task test set (up-
per) and inter-task test set (lower). Models are
fine-tuned with a consistent learning data size of
25,000 while varying task diversity.

accuracy and semantic correctness. Therefore, in
Textual Entailment and Cause-Effect Classification
tasks, the performance improvements of LoRA with
increasing rank are not notable until the rank ex-
ceeds 128. Similarly, this trend continues until a
rank of 512 in Dialogue Act Recognition.

These observations underscore the critical role
of learning capacity settings in model training and
compression, implying that large models may adopt
different paradigms to solve problems at different
learning capacities.

3.4. Task Scaling

To further investigate the effect of LoRA and full
fine-tuning on different levels of task diversity, this
section maintains a constant data size while scaling
tasks, and subsequently measures their general-
ization performance.

Specifically, we design control experiments
based on the previous experimental settings. To
maintain a constant training data size while varying
task diversity, we randomly sample 250 examples
from each task in T100 and 50 examples from each
task in T500 with replacement, resulting in training
datasets T ∗

100 and T
∗

500 that contain a total of 25,000
instances. Similarly, these training data do not in-
clude any test data, and we conduct three sam-
plings to ensure the reliability of the experiments.
Figure 5 presents the intra-task and inter-task gen-
eralization performance for both full fine-tuning and
LoRA, where we consider two representative rank
settings: 16 and 2048. All reported results rep-
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resent the average performance across the three
sampled training sets.

By analyzing the intra-task and inter-task gener-
alization performance of both LoRA and full fine-
tuning, we find that:

Finding 1: The learning capacity can significantly
impact the memorization capabilities of LLMs.

When the dataset size remains consistent while
the number of learning tasks increases, having
a sufficient learning capacity becomes essential
for achieving effective performance on seen tasks.
This is evident from the results presented in the up-
per part of Figure 5, which consistently demonstrate
an improvement in intra-task generalization capabil-
ity with increasing number of learnable parameters.
Furthermore, as the complexity of learning objec-
tives escalates, there is a consistent decline in the
intra-task performance of models with the same
learning capacity. In particular, as the number of
learning tasks scales from 100 to 500, there is a
noticeable reduction in generalization performance
for both LoRA and full fine-tuning on seen tasks.
This phenomenon can be attributed to the reduc-
tion in available examples for learning each specific
task as the number of training tasks grows. Conse-
quently, models with limited learning capacity face
challenges in effectively capturing task-specific fea-
tures and patterns, which subsequently impacts its
intra-task generalization ability.

Finding 2: The relationship between learning ca-
pacity and task diversity has intricate effects on the
generalization performance of LLMs.

From the bottom part of Figure 5, We observe
that larger learning capacity doesn’t necessarily
lead to stronger generalization performance, which
differs from the commonly held belief. Specifically,
the inter-task generalization performance of full fine-
tuning lags behind that of LoRA with a rank of 2048,
which only possesses 24% of the learnable param-
eters of full fine-tuning. This phenomenon also
highlights the significance of incorporating appropri-
ate regularization techniques during the fine-tuning
process to enhance the cross-task generalization
capability of LLMs. Additionally, determining the
optimal learning capacity represents a valuable di-
rection for future research.

4. Related Work

4.1. Instruction Tuning

In recent years, large language models have
demonstrated remarkable capabilities in zero-shot
(Wei et al., 2022; Sanh et al., 2022; Kojima et al.,
2022) and few-shot learning (Brown et al., 2020;
Mishra et al., 2021; Ye et al., 2021). To help the
model better understand user intentions and fol-
low instructions more accurately, various efficient

instruction tuning strategies have been proposed
(Wei et al., 2022; Wang et al., 2022; Iyer et al., 2022;
Wang et al., 2023; Longpre et al., 2023; Touvron
et al., 2023b).
Among them, extensive research has shown that

scaling the number of learning tasks can signifi-
cantly enhance the generalization ability of large
language models. Specifically, Wei et al. (2022) re-
veal that the performance of LLMs on unseen tasks
improves with the increasing number of instruction
tuning task clusters, and that the benefits emerge
only with sufficient model scale. Similarly, Sanh
et al. (2022) have demonstrated that multi-task
prompted training can enable strong zero-shot gen-
eralization abilities in language models and scal-
ing the number of training tasks and the number
of prompts per task helps boost the zero-shot task
generalization performance. Chung et al. (2022) ex-
amine the effect of scaling and show that the model
performance substantially improved with both a
larger model size and more fine-tuning tasks.

4.2. Low-Rank Adaptation

Recently, due to the extensive computational
resources required to fully fine-tune LLMs, re-
searchers have focused on developing parameter-
efficient techniques that strike a balance be-
tween computational resources and performance
(Houlsby et al., 2019; Lester et al., 2021; Li and
Liang, 2021; Ben Zaken et al., 2022; Liu et al.,
2023). Among them, one notable representative
method is LoRA (Hu et al., 2022), which proposes
to decompose the original weight matrix updates
into a product of two low-rank matrices.
However, recent works focused on LoRA typically

conduct experiments using ranks within the range
of 8 to 64. Among them, some works indicate that
LoRA generally achieves promising performances
in single-task, low-resource settings. For exam-
ple, Chen et al. (2022) highlight that LoRA tends to
outperform full fine-tuning solely on low-resource
tasks. Pu et al. (2023) reveal that LoRA outper-
forms full fine-tuning in low to medium-resource
scenarios, while the effectiveness of full fine-tuning
tends to improve with increased data availability.
Moreover, certain studies indicate that LoRA strug-
gles to achieve comparative performance to full
fine-tuning in multi-task instruction tuning scenar-
ios. Zhang et al. (2023) utilize LoRA with a rank
of 16 to fine-tune LLaMA through scenario-specific
multi-task instruction tuning, uncovering that full
fine-tuning achieves superior performance com-
pared to LoRA. Sun et al. (2023) fine-tune LLaMA
on Chinese instruction data and show that the per-
formance of LoRA with a rank of 8 lags significantly
behind full fine-tuning by approximately 10 points.
Wu et al. (2023) show a performance gap of over
10 points between full fine-tuning and LoRA with
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a rank of 8 when fine-tuning LLaMA on medical
papers.

To the best of our knowledge, the exploration of
the relationship between trainable parameters, task
diversity, and multi-task learning capabilities for
LoRA remains limited. To bridge this research gap,
we conduct a comprehensive analysis to explore
the intricate connection between the learning ca-
pacity of LoRA and its generalization performance
on both seen and unseen tasks.

5. Conclusion

In this paper, we conduct a systematic study to
examine the intra-task and inter-task generaliza-
tion capabilities exhibited by LoRA across various
ranks and full fine-tuning. Our findings challenge
common assumptions that the limited learning ca-
pacity will result in performance decline. Specifi-
cally, LoRA can achieve remarkable intra-task and
inter-task performances in high-resource and multi-
task scenarios, even comparable to that of full fine-
tuning. We observe that the limitation in learning
capacity prompts LoRA to prioritize conforming to
the instruction requirements instead of memoriz-
ing the specialized features of particular tasks or
instances. These observations point to implicit reg-
ularization within LoRA, which reduces overfitting to
seen tasks and improves the generalization ability
on unseen tasks. Our research also uncovers the
inherent connection between learning capacity and
generalization capabilities, contributing to robust
and parameter-efficient fine-tuning.

6. Limitations

We discuss limitations of our work that hopefully
could inspire future research in this avenue.

Limited Exploration of Low-Rank Adaptation:
Our study primarily investigates the generalization
capabilities of models with different learning capaci-
ties by varying the rank of LoRA within the attention
layers of transformers. Although this aligns with
prior research that has predominantly applied LoRA
within the attention layers, we leave the exploration
of extending the application of low-rank adaptation
to the entire transformer architecture as important
future work.

Limited Exploration of Base Model: Due to
constraints in computational resources and time,
our experiments are conducted exclusively on the
LLaMA-7B. While this model serves as an illustra-
tive example, it may not fully represent the broader
landscape of large language models. Extending
our investigation to a wider range of models with
varying scales and architectures could provide a
more comprehensive understanding of the connec-
tion between learning capacity and generalization

performance.
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