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Abstract

Instruction Fine-Tuning enhances pre-trained
language models from basic next-word predic-
tion to complex instruction-following. How-
ever, existing One-off Instruction Fine-Tuning
(One-off IFT) method, applied on a diverse in-
struction, may not effectively boost models’
adherence to instructions due to the simulta-
neous handling of varying instruction com-
plexities. To improve this, Phased Instruc-
tion Fine-Tuning (Phased IFT) is proposed,
based on the idea that learning to follow in-
structions is a gradual process. It assesses in-
struction difficulty using GPT-4, divides the
instruction data into subsets of increasing dif-
ficulty, and uptrains the model sequentially
on these subsets. Experiments with Llama-2
7B/13B/70B, Llama3 8/70B and Mistral-7B
models using Alpaca data show that Phased
IFT significantly outperforms One-off IFT, sup-
porting the progressive alignment hypothesis
and providing a simple and efficient way to
enhance large language models. Codes and
datasets from our experiments are freely avail-
able at https://github.com/xubuvd/PhasedSFT.

1 Introduction

Instruction fine-tuning (IFT) (Ouyang et al., 2022;
Longpre et al., 2023), involving training on in-
struction dataset using standard supervised fine-
tuning method, aligns pre-trained language models
to users’s intent and has been proven as an effective
alignment method to enhance their ability to follow
instructions. Large language models (LLMs) are
pre-trained on raw text data using maximum like-
lihood estimation, equipping them with the basic
ability to predict the next word (Zhou et al., 2023;
Zhao et al., 2023). However, a gap exists between
this ability and following user intentions (Thoppi-
lan et al., 2022; Ouyang et al., 2022). To bridge
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Figure 1: In the context of increasing difficulty multi-
stage sub-datasets, the trend of win rate growth for
uptraining (Phased IFT) compared to One-off on the
original dataset is observed. The gray horizontal line
represents the performance baseline of One-off.

this gap and enable models to complete human
end tasks, various instruction fine-tuning strate-
gies have been proposed, including SFT (Ouyang
et al., 2022), LIMA (Zhou et al., 2023), Alpaca
(Taori et al., 2023; Dubois et al., 2023), Alpagasus
(Chen et al., 2024), CoT (Wei et al., 2022), Super-
filtering (Li et al., 2024) and Self-instruct (Wang
et al., 2023b). Among these, SFT and LIMA em-
ploy human-written instruction data for fine-tuning,
while strategies like Self-instruct, Alpaca, Alpa-
gasus utilize ChatGPT as a teacher to automati-
cally generate extensive instruction datasets. Their
training approach, a one-off IFT on the whole in-
struction data without differentiating the difficulty
levels of instructions, lacks efficiency in enhancing
the instruction-following capability of pre-trained
models.

An instruction sample comprises a triplet of an
instruction, an optional input, and an output (Wang
et al., 2023b). The instruction describes the task,
the input serves as an additional context to the in-
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struction, and the output is the answer following the
instruction. Diversity (Dubois et al., 2023; Wang
et al., 2023b; Zhou et al., 2023) is a crucial as-
pect of a high-quality instruction dataset, indicating
that such datasets are typically extensive, encom-
passing a wide range of tasks and examples rep-
resenting different levels of instruction-following
difficulty. For instance, tasks like mathematical
problem-solving, code writing, entity extraction,
and copy generation each present varying levels of
difficulty. Even within the same category of instruc-
tions, the difficulty can vary with the length of the
input (refer to Table 1 for details). In the realm of
entity extraction, the difficulty differs between ex-
tracting place names and identifying product name
fragments in e-commerce (Li et al., 2023b).

However, previous instruction fine-tuning meth-
ods have treated large-scale instruction dataset uni-
formly, feeding them to the pre-trained model for
one-time alignment training without differentiating
the role of instructions of varying difficulties in the
fine-tuning process. This approach overlooks the
nuanced differences in instruction complexities and
potentially limits the efficiency of model training.

To address the aforementioned issue, this paper
introduces an instruction difficulty scoring mecha-
nism. Specifically, the difficulty of an instruction is
defined by the complexity of the instruction itself,
the input, and the challenges involved in gener-
ating the output. We employ the strongest avail-
able models (such as GPT-4 (OpenAI, 2023)) as a
teacher to score the difficulty of each instruction
and input, as well as the challenge in generating
the output, on a scale from 1 to 5, where higher
scores indicate greater difficulty. Further, we plot
probability density curve of the instruction diffi-
culty as a heuristic guide (Campello et al., 2020),
coupled with expert judgment to select thresholds
for difficulty scores. This approach enabled us to
segment the instruction dataset into multi-stages
sub-datasets, forming a sequence with increasing
difficulty levels. Building upon this, we further
propose the Progressive Alignment Hypothesis:
Aligning a pre-trained model’s existing ability to
predict the next word with the capability to gen-
erate content following human intent is a gradual
learning process, progressively attaining alignment
with human intent.

Based on the hypothesis, we develop a Phased
Instruction Fine-Tuning (Phased IFT) method, di-
verging from the traditional One-off IFT approach.
Phased IFT represents an effective sequential up-

training framework, which entails progressively
training on sub-instruction datasets of incremen-
tal difficulty. Initially, training commences on an
easy sub-dataset with the standard supervised loss.
Following training completion, the model check-
point is saved and subsequently utilized to extend
supervised training to a marginally more complex
sub-dataset. This iterative process persists until the
most challenging sub-dataset is addressed.

We conducted extensive experiments using two
leading open-source pre-trained models, Llama2
7/13/70B (Touvron et al., 2023), Llama3 8/70B,
and Mistral 7B (Jiang et al., 2023), on two widely-
used instruction datasets, Alpaca and its refined
version AlpacaClean. To evaluate the training ef-
fectiveness, we utilized 6 benchmarks, with GPT-4
serving as the judge to measure the performance
improvements of Phased IFT over One-off IFT in
terms of win rate. Specially, Figure 1 illustrates
the process wherein Phased IFT’s win rate pro-
gressively surpasses that of One-off IFT on the
three-stage difficulty-increasing sub-datasets. It is
evident that the three Llama2 models and the two
Llama3 models exhibit a consistent trend of increas-
ing win rates with the progression of uptraining on
multi-stage sub-datasets, indicating the effective-
ness of the progressive alignment hypothesis. Fur-
thermore, we conducted three sets of experiments
and an ablation study to confirm the effectiveness
of Phased IFT. The main contributions of this paper
include:

• We propose a phased instruction fine-tuning
(Phased IFT) method, utilizing GPT-4 for scor-
ing the difficulty of instructions and subse-
quently dividing the instruction dataset into
a sequence of multi-stages sub-datasets with
increasing difficulty levels. This approach
employs uptraining on the sequence of multi-
stages sub-datasets.

• We introduce the Progressive Alignment Hy-
pothesis, which posits that aligning the gener-
ative capabilities of pre-trained models with
human intent is a gradual process, rather than
being achieved through a one-time fine-tuning
on an instruction dataset. This hypothesis is
supported by extensive experimental valida-
tion.

• Extensive experiments have demonstrated that
our proposed Phased IFT is more effective
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than One-off IFT. It has significantly outper-
formed One-off IFT across 6 benchmarks. Ad-
ditionally, a series of ablation experiments
have validated the effectiveness of the Pro-
gressive Alignment Hypothesis.

2 Related Work

Open-source Instruction Dataset The Alpaca
dataset (Taori et al., 2023) aims to improve
instruction-following ability of LLMs, consist-
ing of 52K instructions, generated using Ope-
nAI’s text-davincic-003. It has improved the self-
instruction framework (Wang et al., 2023b), lead-
ing to a greater diversity in the Alpaca dataset
compared to the Self-Instruction dataset. Alpaca-
cleaned (yahma, 2023) is a quality-enhanced ver-
sion of the original Alpaca dataset, which addresses
hallucinations, empty outputs, and incorrect an-
swers, thereby improving the overall quality of the
dataset. In addition, LIMA (Zhou et al., 2023) has
also released a carefully curated dataset, including
1000 instructions, which encompasses 750 popu-
lar queries and responses from community forums
such as Stack Exchange and wikiHow, as well as
250 meticulously crafted entries.

Instruction Fine-tuning Strategy The preva-
lent method of instruction fine-tuning, employed
in models such as LIMA, Alpaca, Alpagasus and
Superfiltering (Li et al., 2023a, 2024), involves a
one-off instruction fine-tuning (One-off IFT) on
the whole instruction dataset characterized by their
diversity and high quality. This approach, while
emphasizing dataset quality and diversity (Wang
et al., 2023b), neglects the inherent complexity of
the instruction sets. Consequently, this one-off IFT
fails to adequately equip models with the nuanced
capability to comprehend and execute a wide ar-
ray of instructions. Differs from the one-off IFT
approach, our proposed phased IFT method ini-
tially segments the instruction dataset into multiple
sub-datasets, arranged in a sequence from simple
to complex in terms of instruction difficulty. Con-
tinuous uptraining is then executed across this se-
quence.

3 Method

Figure 2 presents the overall pipeline of our pro-
posed Phased Instruction Fine-Tuning (Phased
IFT), encompassing three key components: In-
struction Difficulty Calculating (IDC), Instruction
Dataset Segmenting (IDS), and Uptraining. Where,

IDC prompts GPT-4 to allocate a difficulty rating to
each instruction. Following this, IDS converts the
instructions’s score into a cumulative probability
distribution, which facilitates the division of the
dataset into subsets categorized by difficulty level,
and segments the whole instruction data into sev-
eral stages. Finally, across this stages, Uptraining is
performed, beginning with those classified as less
challenging. Detailed elaborations on the specifics
of each component are provided in the subsequent
sections of this chapter.
Instruction Difficulty Calculating (IDC) Follow-
ing Alpagasus’s prompt (Chen et al., 2024), we also
design a GPT-4-based scoring prompt to assess the
difficulty of each triplet of (instruction, input, out-
put) within the 52K Alpaca dataset, using a scale
of 1 to 5, with higher scores indicating greater dif-
ficulty. This prompt is detailed in Figure 3, where
each triplet is evaluated in two dimensions. Firstly,
we consider the intrinsic difficulty of the instruction
itself, reflecting the complexity inherent to the task
described. Secondly, we evaluate the challenge in-
volved in transforming the given instruction to the
expected output, thereby estimating the difficulty
from instruction to output. This dual-dimensional
scoring approach allows for a nuanced understand-
ing of task complexity within the dataset.

The difficulty score histogram of the 52K Alpaca
dataset is illustrated as shown in the left of Figure 2.
Another interesting finding is that a majority of in-
structions in the 52K Alpaca are categorized as low
difficulty, with approximately 63.5% scoring below
1.5. In contrast, within the Alpaca-clean dataset,
instructions with a difficulty score lower than 1.5
account for 52.3%; in the LIMA dataset, the pro-
portion of instructions with a difficulty score below
1.5 is merely 9.9%, while those scoring above 4.5
account for a significant 58.3%. Details of their
comparison can be found in Appendix A.1and A.2.
This highlights the feasibility of employing GPT-4
to assess the difficulty level of instructions.
Instruction Dataset Segmenting (IDS)

Our goal is to divide the instruction dataset into
multi-stages sub-datasets based on difficulty scores,
while ensuring that the number of samples in each
sub-dataset remains relatively balanced. To ob-
tain heuristic information from the scored, discrete
dataset, we plot Gaussian kernel density curve on
the scored dataset. This curve represents the cu-
mulative probability density as the difficulty score
increases from the minimum to the current score,
as depicted in the middle part of Figure 2. Utilizing
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Figure 2: Overview of the proposed Phased Instruction Fine-Tuning (Phased IFT).

Figure 3: A prompt to ChatGPT-4 for scoring instruction difficulty.

human experience, we select threshold scores, such
as the 1.5 and 3.5 marked by blue vertical lines.
These thresholds segment the whole 52K Alpaca
instruction dataset into three stages sub-datasets.

The first stage (stage 1), covering difficulty
scores from [1, 1.5), encompasses 30.3k samples;
the second stage (stage 2), spanning scores from
[1.5, 3.5), accounts for 14.7k samples; and the
third stage (stage 3), with scores within [3.5, 5],
comprises 6.8k samples. These three stages sub-
datasets form a sequence of sub-datasets with in-
creasing difficulty scores, which are used for up-
training in the next phase.
Uptraining In the post-IDS phase, uptraining is
performed across three sequential stages, initiating
with fine-tuning at the first stage and progressively
advancing through the second and third stages.
Throughout this process, hyperparameters such as
learning rate, batch size, epoch count, and warmup
ratio are consistently applied. A standard super-
vised loss function is used in the uptraining. Specif-
ically, the triplet of (instruction, input, output) is

merged into a text string for training, wherein the
model predicts each token. Nonetheless, loss calcu-
lation is confined to the output part, with loss from
the instruction and input parts masked.

4 Experiments

This paper aims to validate the progressive align-
ment hypothesis by comparing the efficacy of
two instruction training methodologies: One-off
Instruction Fine-Tuning (One-off IFT) and our
proposed Phased Instruction Fine-Tuning (Phased
IFT), through three experiments and ablation stud-
ies. Experiment 1 demonstrates the superior per-
formance of Phased IFT over One-off IFT across
two instruction datasets, establishing its effective-
ness. Experiment 2 evaluates the effectiveness of
stratifying instruction datasets by difficulty versus
arbitrary segmentation, aiming to attribute Phased
IFT’s success to difficulty-stratified instruction data
categorization rather than to the phased training ap-
proach. Experiment 3 conducts a full permutation
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analysis of Phased IFT to demonstrate that its suc-
cess is specifically due to uptraining in a sequence
of increasing difficulty, with alternative sequencing
failing to produce comparable outcomes.
Datasets and Evaluation We conducted extensive
experiments on the standard Alpaca 52K instruc-
tion data and its refined version, Alpaca-cleaned,
using 6 recent LLMs: Llama-2 7/13/70B, Llama-3
8/70B and Mistral-7B. These models were evalu-
ated across 6 benchmark datasets: Self-Instruction
(Wang et al., 2023b) of size 252, WizardLM (Xu
et al., 2024) 218, Koala (Geng et al., 2023) 180,
Vicuna (Chiang et al., 2023) 80, OASST 188 (Köpf
et al., 2023), and Anthropic of size 129 (Bai et al.,
2022).

Following the evaluation framework established
by Alpagasus (Chen et al., 2024), we prompted
GPT-4 to assess Win-Tie-Lose outcomes and com-
pute win rates across the aforementioned 6 bench-
marks. Subsequently, a weighted average win rate
metric is calculated based on these 6 benchmark
datasets, referred to as Avg. win rate. Using iden-
tical instruction and input, GPT-4 acts as an auto-
grader (Zheng et al., 2023; Chia et al., 2023) to
score the quality of output from both One-off IFT
and Phased IFT methods on a scale of 1 to 10 (see
prompt in Appendix A.3). To ensure fairness, each
instruction is scored twice, with Phased IFT’s out-
put positioned before and after One-off IFT’s out-
put. An instruction’s overall outcome is determined
based on these evaluations.

• Win: win twice or win once and tie once;

• Tie: tie twice or win once and loses once;

• Lose: loses twice or loses once and tie once.

The win rate calculation formula is as follows:

WinRate =
#win+#tie/2

#win+#tie+#lose
− 0.5,

where # means the corresponding number of sam-
ples.
Stratifying Alpaca by Difficulty Score The in-
struction difficulty within the Alpaca and Alpaca-
cleaned datasets is quantitatively assessed by GPT-
4, assigning scores from 1 to 5, with higher scores
indicating increased complexity. Using density
curves (e.g., Figure 2 for Alpaca and Figure 5 for
Alpaca-cleaned), we adopt threshold values of 1.5
and 3.5 for both datasets, segmenting them into
three stages sub-datasets, referred to as Alpaca-3-
stages and Alpaca-cleaned-3-stages.

For ablation experiments, we construct randomly
sampled 3-stages datasets, with each stage con-
taining the same number of instructions as the
difficulty-segmented subset. These are denoted
as Alpaca-rand-3-stages and Alpaca-cleaned-rand-
3-stages. Detailed statistics are provided in Table 1.
Implementations In our training, we employed
Huggingface’s Trainer coupled with DeepSpeed’s
Zero3 for data-parallel, full-parameter fine-tuning.
Consistently, a learning rate of 5e-6 and a 2 epoch
duration were utilized across experiments. We set
a per-device batch size of 4 for 70B model and 16
for other models, a gradient accumulation step of
1, with a weight decay of 0.1 and a warmup ratio
of 0.1. Additionally, a cosine annealing learning
rate scheduler was employed.

4.1 Experiment 1: compares the win rates of
Phased IFT and One-off IFT

Table 2 lists the win rate results of Phased IFT com-
pared to the One-off IFT method, demonstrating
that our proposed Phased IFT significantly outper-
forms the One-off IFT method across six bench-
marks on two training datasets.

The first part of Table 2 compares the results of
the two fine-tuning methods on Alpaca. Phased IFT
was uptrained on Alpaca-3-stages, while One-off
IFT was trained once on the original Alpaca. Us-
ing six base models, Phased IFT exceeded One-off
IFT in the Avg. win-rate metric. Specifically, com-
pared to the One-off IFT method trained once on
the original Alpaca dataset, the Llama-2 7B using
the Phased IFT fine-tuning method on Alpaca-3-
stages showed a minimum win rate increase of
+4.17 on Self-Instruct and a maximum of +14.34
on Anthropic, with an average win rate of +7.26.
The Mistral 7B also achieved an Avg. win rate of
+6.30; Llama 2 13B reached an average win rate
of +7.35, with a win rate of +16.28 on Anthropic;
Llama 3 8B and 70B both achieved an average win
rate increase of over +5.0.

The second part of Table 2 compares the win
rates of five base models using the two fine-tuning
methods on Alpaca-cleaned. Specifically, the three
Llama2 series models achieved average win rates
of +3.53, +6.49, and +7.59, respectively, while
Llama3 8B achieved an average win rate of +3.97.
It can be observed that the average win rates
of Llama2 7B/13B and Llama3 8B on Alpaca-
cleaned are lower than their results on Alpaca,
while Llama2 70B’s average win rate increased
from +2.82 on Alpaca to +7.59 on Alpaca-cleaned.
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Table 1: Detailed statistics in each stage of Alpaca and Alpaca-cleaned instruction data, including the number of
samples (K), average difficulty per sample, and average token length per sample.

Data Number (K) Avg. Difficulty Avg. Token Length
stage1 stage2 stage3 stage1 stage2 stage3 stage1 stage2 stage3

Alpaca 30.3 14.7 6.8 1.00 2.21 4.25 63.16 106.83 134.40
Alpaca-cleaned 23.9 16.4 11.4 1.00 2.22 4.25 113.42 200.99 301.60

Table 2: Comparisons of win rates of Phased IFT against One-off IFT. The changes in win rates are represented by
percentage differences, where a "+" indicates an increase and "-" denotes a decrease in percentage.

Base Models Self-Instruct WizardLM Koala Vicuna OASST Anthropic Avg. win-rate Data
Llama-2 7B +4.17 +6.42 +5.56 +6.88 +9.31 +14.34 +7.26

Alpaca

Mistral 7B -0.60 +5.96 +6.11 +16.25 +7.98 +12.02 +6.30
Llama-2 13B +1.98 +2.75 +7.78 +11.88 +11.44 +16.28 +7.35
Llama-2 70B -3.04 +2.57 +7.27 +13.46 +4.10 +0.00 +2.82
Llama-3 8B +3.05 +9.67 +9.52 +7.50 +6.32 +12.60 +7.64
Llama-3 70B +1.65 +10.10 +5.23 +5.84 +2.34 +7.87 +5.23
Llama-2 7B +4.76 +1.15 +4.44 +2.50 +5.85 +1.16 +3.53

Alpaca-
cleaned

Llama-2 13B +4.56 +2.98 +5.83 +15.62 +6.91 +10.85 +6.49
Llama-2 70B +0.40 +6.42 +8.33 +12.50 +10.90 +14.73 +7.59
Llama-3 8B +5.75 +3.90 +1.15 +0.62 +4.79 +5.43 +3.97

Due to time constraints, experiments on Llama3
70B have not yet been completed.

The results of Experiment 1 indicate that the
Phased IFT fine-tuning method is indeed more ef-
fective than One-off IFT, achieving significantly
higher win rates on most of the six benchmarks,
with an overall average win rate significantly higher
than that of One-off IFT.

4.2 Experiment 2: Comparison of win rate
between difficulty-stratified 3-stages and
randomly sampled 3-stages

Experiment 1 demonstrates the effectiveness of
Phased IFT compared to One-off IFT, while Exper-
iment 2 reveals that this effectiveness arises from
multi-stage sub-datasets with increasing difficulty,
not from the multi-stage training itself. There-
fore, we designed multi-stage datasets with random
segmentation, each segment maintaining the same
quantity as the corresponding dataset with increas-
ing difficulty, but the data points were randomly
sampled. Table 3 lists the results of three sets of
experiments as follows.

The first part of Table 3 presents the win rate
of Phased IFT on Alpaca-rand-3-stages relative
to One-off IFT on the original Alpaca. Specifi-
cally, we used five baseline models, namely Llama2
7/13/70B and Llama3 8/70B. Their performance on
six benchmarks was consistently lower than that of

One-off IFT, indicated by negative win rates. This
suggests that segmenting the dataset randomly into
multiple subsets and then performing uptraining
did not yield benefits. Similarly, the second part
of Table 3 shows the win rate of Phased IFT on
Alpaca-cleaned-rand-3-stages relative to One-off
IFT on the original Alpaca-cleaned. Based on the
results, the win rates of Llama2 7B and Llama3 8B
were negative, indicating that multi-stage training
did not help.

The third part of Table 3 shows the win rate of
Phased IFT on Alpaca-3-stages relative to Phased
IFT on Alpaca-rand-3-stages. The results indicate
that uptraining on the difficulty-increasing Alpaca-
3-stages dataset resulted in significantly higher win
rates than uptraining on the randomly segmented
Alpaca-rand-3-stages dataset. Specifically, we used
five baseline models for uptraining on both Alpaca-
3-stages and Alpaca-rand-3-stages. The average
win rate of Llama3 70B reached +10.62, Llama2
70B reached +9.71, Llama2 13B reached +8.29,
and Llama2 7B and Llama3 8B also reached +5.74
and +5.95, respectively. These models all achieved
consistently high win rates, far higher than uptrain-
ing on randomly segmented subsets.

These experiments indicate that uptraining on
multi-stage datasets with increasing difficulty is
beneficial and enhances the model’s capabilities.
Uptraining on randomly segmented multi-stage
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Table 3: Part #1 assesses win rates of Phased IFT on Alpaca-rand-3-stages against One-off IFT on the original
Alpaca data. Part #2 evaluates win rates of Phased IFT on Alpaca-cleaned-rand-3-stages over One-off IFT on the
original Alpaca-cleaned data. Part #3 measures win rates of Phased IFT on Alpaca-3-stages compared to Phased
IFT on Alpaca-rand-3-stages.

Base Models Self-Instruct WizardLM Koala Vicuna OASST Anthropic Avg. win-rate Part
Llama-2 7B -0.60 +2.98 -6.61 +3.12 -1.33 +1.94 -0.42

#1
Llama-2 13B -1.98 -2.29 -0.29 -6.88 -2.93 -0.39 -2.10
Llama-2 70B -10.32 -5.96 -6.90 -3.12 -11.97 -5.43 -7.96
Llama-3 8B -7.74 -1.38 -1.15 +5.00 +0.00 -2.33 -2.25
Llama-3 70B -10.00 -3.63 -4.44 -5.63 -6.89 -2.73 -5.92
Llama-2 7B -1.34 -5.07 -3.85 +8.12 -1.34 -2.76 -2.00

#2Llama-2 13B +0.58 -0.69 +1.26 +1.88 +2.97 -0.39 0.84
Llama-3 8B +2.80 +0.69 -6.94 +2.50 +4.30 -6.59 -0.22
Llama-2 7B +2.38 +3.90 +11.78 +11.25 +2.39 +8.53 +5.74

#3
Llama-2 13B +6.94 +2.98 +6.32 +16.25 +11.70 +12.79 +8.29
Llama-2 70B +8.93 +5.50 +10.34 +19.38 +11.97 +8.14 +9.71
Llama-3 8B +2.18 +0.69 +13.79 +2.50 +8.78 +9.30 +5.95
Llama-3 70B +8.07 +14.10 +12.50 +17.12 +8.63 +5.96 +10.62

Table 4: Win rates of all permutations of Phased IFT compared to One-off IFT on the original Alpaca data.

Permutations Self-Instruct WizardLM Koala Vicuna OASST Anthropic Avg. win-rate Base Models
1-2-3 +4.17 +6.42 +5.56 +6.88 +9.31 +14.34 +7.26

Llama2 7B

2-1-3 +1.39 +6.65 +2.30 +6.88 +4.79 +8.91 +4.59
3-1-2 +0.80 +0.94 -2.35 +6.88 +3.83 +8.66 +2.26
1-3-2 +3.57 -1.15 -1.15 +1.88 +2.66 +8.91 +2.14
2-3-1 -2.61 -6.81 -7.65 -5.70 -4.12 -0.39 -4.5846
3-2-1 -7.23 -3.18 -9.09 +1.54 -5.98 +2.73 -4.5847
1-2-3 +1.98 +2.75 +7.78 +11.88 +11.44 +16.28 +7.35

Llama2 13B

2-1-3 +2.33 +1.63 +8.82 +6.39 +6.41 +12.29 +5.57
3-1-2 -0.61 +0.70 +4.39 +5.62 +2.75 +8.40 +2.71
1-3-2 -0.40 +2.14 +6.17 +1.25 +4.72 +9.60 +3.53
2-3-1 -6.83 -10.56 -8.33 -8.12 -3.57 +0.78 -6.44
3-2-1 -5.42 -8.22 -7.69 -8.23 -10.50 -1.97 -7.09
1-2-3 +3.05 +9.67 +9.52 +7.50 +6.32 +12.60 +7.64

Llama3 8B

2-1-3 -2.48 +3.61 +4.94 +3.38 +6.21 +5.24 +3.02
3-1-2 +0.82 +2.12 +0.90 +3.80 +2.53 +6.35 +2.32
1-3-2 -0.41 +0.00 +0.31 -1.97 +5.40 +5.16 +1.40
2-3-1 -11.27 -14.44 -11.70 -14.86 -16.44 -14.22 -13.57
3-2-1 -11.88 -9.39 -5.00 -5.77 -9.23 -3.97 -8.26

datasets reduced the model’s capabilities, and the
results were not as good as single-step fine-tuning
on the original dataset (For a detailed graphical
presentation, please refer to Appendix A.4). This
suggests that multi-stage training methods did not
improve the model’s capabilities and yield benefits.
The effect of Phased IFT mainly comes from multi-
stage subsets with increasing difficulty, which also
validates our proposed progressive alignment hy-
pothesis, that aligning pre-trained models to accom-

plish the final human task is a gradual process.

4.3 Experiment 3: compares the win rates
achieved by uptraining on Alpaca-3-stages
across all permutations

To investigate the impact of varying the sequence of
Alpaca-3-stages on the performance of the Llama-2
7B/13B and Llama3 8B models with clarity and
precision, the following structure is proposed. This
structure presents the uptraining order across the
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Table 5: Ablation studies of various methods on Alpaca-3-stages instruction data. Each entry denotes the win rate
of Phased IFT against One-off IFT on the original Alpaca data.

Method Self-Instruct WizardLM Koala Vicuna OASST Anthropic
Avg.

win-rate
Models

Phased IFT
stage1 -8.53 -10.32 -15.00 -6.25 -10.11 -4.26 -9.59

Llama2
7B

stage2 +3.57 +2.98 -0.83 +5.00 +3.99 +7.36 +3.34
stage3 +4.17 +6.42 +5.56 +6.88 +9.31 +14.34 +7.26

IFT on stage2 -0.20 +2.52 -0.83 +8.75 +0.53 +0.39 +1.14
IFT on stage3 +0.99 +6.88 +1.67 +16.25 +0.00 +10.08 +4.44
IFT on mixed stage1&2 +2.78 +1.83 -8.33 -5.00 -4.79 +0.00 -1.62
IFT on mixed stage1&3 -2.58 +0.00 -2.50 +3.12 -3.46 -3.88 -1.91
IFT on mixed stage2&3 +0.40 +1.38 +4.17 +8.12 +1.33 +12.79 +3.53

Phased IFT
stage1 -6.55 -10.09 -13.61 -6.88 -6.65 -0.78 -7.83

Llama2
13B

stage2 +0.40 -0.23 +4.44 +3.75 +3.72 +16.28 +3.77
stage3 +1.98 +2.75 +7.78 +11.88 +11.44 +16.28 +7.35

IFT on stage2 -2.40 -0.47 +4.09 +3.80 +6.87 +9.06 +2.66
IFT on stage3 +4.56 +7.26 +4.11 +10.12 +3.26 +9.18 +5.80
IFT on mixed stage1&2 -0.60 -1.61 -3.06 +0.62 +2.93 +2.71 -0.09
IFT on mixed stage1&3 +1.39 +0.46 -3.33 +0.00 +6.12 +3.10 +1.33
IFT on mixed stage2&3 +1.39 +3.67 +7.50 +8.12 +7.45 +10.85 +5.68

three stages, denoted as Stage 1 (1), Stage 2 (2),
and Stage 3 (3), to illustrate the sequence in which
the model was uptrained on different segments of
the instruction data:

• 1-2-3: This order indicates that the model was
first uptrained on data from Stage 1, followed
by Stage 2, and finally Stage 3.

• 2-1-3: The model was initially uptrained on
Stage 2 data, then on Stage 1, and finally with
Stage 3.

• 3-1-2: The uptraining commenced with Stage
3 data, proceeded to Stage 1, and ended with
Stage 2.

• 1-3-2: The sequence started with Stage 1,
moved to Stage 3, and finished with Stage
2.

• 2-3-1: Uptraining began with Stage 2 data,
followed by Stage 3, and then Stage 1.

• 3-2-1: This order shows that the model was
first uptrained on Stage 3 data, then Stage 2,
and finally Stage 1.

Table 4 presents the uptraining results of Llama2
7/13B and Llama3 8B models on the three-stages
Alpaca-3-stages dataset, evaluating 6 possible per-
mutations. Analyzing the average win rate, a clear

pattern emerges: the sequences 1-2-3 and 2-1-3
outperform 1-3-2 and 3-1-2, which in turn outper-
form 2-3-1 and 3-2-1. This suggests that uptraining
on sub-datasets of increasing difficulty can indeed
enhance the model’s potential.

The first part of Table 4 details the full permuta-
tion experiments on the Llama2 7B model. The 1-
2-3 sequence achieved the highest win rates across
6 benchmarks and the average win rate, except for
a slight dip below the 2-1-3 sequence in the Wiz-
ardLM benchmark (e.g., +6.42 vs. +6.65). The
average win rate for the 1-2-3 sequence was +7.26,
significantly higher than the other permutations.
The 2-1-3 sequence also performed well with an
average win rate of +4.59, both sequences shar-
ing a common feature of placing the most difficult
sub-dataset (stage 3) at the final stage of uptrain-
ing. The sequences 3-1-2 and 1-3-2, which place
the medium difficulty sub-dataset (stage 2) last,
also showed positive win rates of +2.26 and +2.14,
respectively. Surprisingly, when the easiest sub-
dataset (stage 1) was placed last, the sequences
2-3-1 and 3-2-1 had lower average win rates than
One-off IFT on the original Alpaca dataset.

The second part of Table 4 shows the full per-
mutation experiments on the Llama2 13B model.
Similarly, the 1-2-3 and 2-1-3 sequences achieved
the highest average win rates of +7.35 and +5.57,
respectively, significantly outperforming the other
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permutations. These sequences also shared the
characteristic of placing the most difficult sub-
dataset (stage 3) last. The 1-3-2 and 3-1-2 se-
quences achieved average win rates of +3.53 and
+2.71, respectively, with the 3-2-1 sequence having
the lowest average win rate of -7.09. Interestingly,
the permutation experiments on the Llama2 13B
model aligned perfectly with the win rate predic-
tions of the progressive alignment hypothesis, rank-
ing the uptraining results from highest to lowest
average win rate as follows: 1-2-3 > 2-1-3 > 1-3-2
> 3-1-2 > 2-3-1 > 3-2-1. This further confirms the
benefit of uptraining on sub-datasets of increasing
difficulty when fine-tuning LLMs.

The third part of Table 4 presents the full permu-
tation experiments on the Llama3 8B model. The 1-
2-3 and 2-1-3 sequences achieved the highest aver-
age win rates of +7.64 and +3.02, respectively, out-
performing the 3-1-2 and 1-3-2 sequences, which
had average win rates of +2.32 and +1.40, respec-
tively. Unlike the Llama2 7/13B models, the 2-3-1
sequence had the lowest win rate at -13.57, signifi-
cantly lower than the -8.26 of the 3-2-1 sequence.
Further investigation is needed to understand the
reasons behind this result.

In sum, the results indicate a phenomenon where
placing more difficult sub-datasets at the final
stage of uptraining on differentiated difficulty sub-
datasets can significantly enhance the model’s ca-
pabilities. This approach markedly increases the
model’s win rate, making the generated results
closer to human perception, as the judgments of
GPT-4 align with human approximately 75%.

4.4 Ablation Studies
We conducted ablation experiments using Llama2
7B/13B on Alpaca-3-stages, incorporating various
sub-dataset combinations. These combinations in-
cluded performing Phased IFT on Alpaca-3-stages,
IFT exclusively on stage 2, IFT exclusively on
stage 3, IFT on a combined sub-dataset of stage 1
and stage 2, IFT on a combined sub-dataset of stage
1 and stage 3, and IFT on a combined sub-dataset
of stage 2 and stage 3. Table 5 presents two sets of
ablation experiments, further verifying the role of
each sub-dataset in fine-tuning LLMs.

The first part of Table 5 shows the ablation re-
sults for the Llama2 7B base model. Performing
IFT exclusively on stage 2 yielded a positive gain,
with a win rate of +1.14. The win rate for Phased
IFT at the stage 2 phase was +3.34, indicating that
stage 1 also played a positive role during uptrain-

ing. The win rate for IFT exclusively on stage 3
reached +4.44, which was higher than the Phased
IFT at stage 2 but lower than the Phased IFT at
stage 3. This suggests that stage 3 played a major
role in performance improvement during Phased
IFT. This result is consistent with the conclusions
of Alpagasus (Chen et al., 2024), which indicate
that high-quality data filtered by GPT is crucial for
fine-tuning models. Performing IFT on the com-
bined sub-dataset of stage 1 and stage 2 resulted
in a negative win rate, as did performing IFT on
the combined sub-dataset of stage 1 and stage 3.
This implies that redundant datasets are not con-
ducive to instruction training. However, perform-
ing IFT on the combined sub-dataset of stage 2
and stage 3 resulted in a win rate of +3.53, higher
than the +1.14 for IFT on stage 2 alone but lower
than the +4.44 for IFT on stage 3 alone. This nu-
anced result suggests that mixing stage 2 data had
a detrimental effect, leading to reduced model per-
formance. Nevertheless, when uptraining across
all three stages (stage 1, stage 2, and stage 3), the
win rate steadily improved, indicating a gradual
enhancement in model capability.

This is a very interesting experimental phe-
nomenon, and similar observations were made in
ablation experiments with Llama2 13B. This in-
dicates that the model performance improvement
achieved through uptraining on increasingly diffi-
cult sub-datasets is not a trivial training technique.
The quality of the instruction data and the align-
ment method are key factors in fine-tuning of large
language models. This also further supports the
hypothesis of alignment progression as a genuine
phenomenon.

5 Conclusion

The paper introduces the progressive alignment hy-
pothesis, and then proposes Phased IFT approach.
Utilizing GPT-4 to score the difficulty of instruc-
tions, the instruction dataset is categorized into dif-
ferent stages according to the difficulty. Diverging
from prior methods that apply a One-off IFT on the
whole instruction data, our approach entails staged,
supervised uptraining on each stage in ascending
order of difficulty. Through extensive experiments,
we have validated the progressive alignment hy-
pothesis and the efficacy of Phased IFT, demon-
strating its utility in developing diverse instruction
dataset and enhancing fine-tuning LLMs.
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6 Broader Impact

This paper discusses a fundamental problem in
Large Language Models (LLMs): How to more ef-
fectively utilize instruction datasets to align LLMs
more efficiently? This paper introduces a simple
and effective alignment method, which includes
the analysis of instruction difficulty and structuring
the dataset into multi-stage sub-datasets, with each
sub-dataset increasing in difficulty. Supervised fine-
tuning is then carried out through uptraining. We
conducted a series of experiments to actively verify
the existence of the progressive alignment hypoth-
esis. If the progressive alignment hypothesis is a
universal phenomenon, then this work will have
a broad impact on the direction of fine-tuning in-
structions for Large Language Models.

The datasets employed in this work, namely Al-
paca 52K and Alpaca-cleaned, are publicly avail-
able, and our training framework leverages open-
source tools, utilizing Hugging Face’s Trainer and
DeepSpeed. Furthermore, we have purchased ac-
cess to OpenAI’s API to employ GPT-4 for as-
sessing the difficulty of instructions and for eval-
uating the quality of generated responses. We
make all our code and data openly available at
https://github.com/xubuvd/PhasedSFT, including
training codes, GPT-4 difficulty scoring codes, win-
rate calculation codes, and the difficulty-stratified
Alpaca and Alpaca-cleaned instruction datasets.

7 Limitations

Here, we discuss some limitations of our study to
inspire future research in this direction.
Automatic instruction dataset segmentation This
study draws heuristic information from the cumula-
tive density curve of difficulty scores in the instruc-
tion dataset using human experience, selecting sev-
eral thresholds to divide the instruction dataset into
multiple subsets at different stages, with increas-
ing difficulty levels. Utilizing human experience
to select thresholds is a significant task that not
only involves partitioning the dataset into subsets
from easy to difficult but also requires considering
the balance in the quantity of each subset, heavily
relying on human expertise. Therefore, a signifi-
cant challenge lies in developing an algorithm ca-
pable of autonomously identifying threshold points
from this cumulative density curve, eliminating the
dependence on human intuition, and ensuring a
balanced quantity across the multi-stage subsets
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A Appendix

Table 6: Comparison of percentage distribution of dif-
ficulty scores on the Alpaca52K dataset with GPT-3.5
and GPT-4

GPT [1.0, 2.5) [2.5, 3.5] (3.5, 4.5) [4.5, 5.0]
3.5 2.18% 62.28% 25.96% 9.56%
4 76.3% 13.38% 4.1% 6.17%

A.1 Comparison of percentage distribution of
difficulty scores on the Alpaca52K dataset
using GPT-3.5 and GPT-4

In our initial assessment, we compared the differ-
ences of GPT-3.5 and GPT-4 (gpt-4-0613) in as-
signing difficulty scores to the Alpaca 52K dataset
through human evaluation, the score ranges from
1.0 to 5.0. We divided the scores between 1.0 and
5.0 into four intervals, with the quantity percentage
of each interval shown in the Table 6.

The distribution of scores reveal a noticeable re-
gression toward the mean for GPT-3.5, with scores
between 2.5 and 3.5 accounting for 62.28% of the
total. A manual review of 200 samples indicated
a mismatch between the assigned difficulty levels
and human judgment, particularly noting an excess
of simpler questions within the dataset. In contrast,
GPT-4’s difficulty ratings aligned with human eval-
uations for approximately 75% of the cases, with
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Figure 4: Histogram and cumulative probability density of difficulty scores for Alpaca 52K dataset.

Figure 5: Histogram and cumulative probability density of difficulty scores for Alpaca-cleaned 52K dataset.

Figure 6: Histogram and cumulative probability density of difficulty scores for LIMA 1000 dataset.

scores ranging between 2.5 and 3.5 comprising
13.38% of the total.

A.2 Histogram and density curve for Alpaca,
Alpaca-cleaned and LIMA

We conducted a comparative analysis on the instruc-
tion difficulty of three datasets—Alpaca, Alpaca-
cleaned, and LIMA—employing GPT-4 for scor-
ing. Figures 4, 5 to 6 illustrate their respective
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Figure 7: A prompt to ChatGPT-4 for rating model’s responses with a score between 1 and 10.

Figure 8: Comparison of the win rate trends for uptraining on multi-stage sub-datasets with increasing difficulty
(solid line) and uptraining on randomly divided multi-stage sub-datasets (dashed line). The gray horizontal line in
the middle represents the baseline of One-off IFT on the original dataset.

score distributions and probability density func-
tions. Alpaca, generated by the Self-Instruct frame-
work, consists of 52K triplets (instruction, input,
output). Alpaca-cleaned represents an enhanced

version of Alpaca, refined to minimize errors such
as incorrect responses and hallucinations. LIMA,
by contrast, is composed of 1,000 manually curated
instructions. Analysis of score histograms across
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these figures indicates a predominance of higher
scores in LIMA, comparatively fewer in Alpaca,
with Alpaca-cleaned exhibiting overall improved
scoring relative to Alpaca. These findings corrobo-
rate our qualitative assessment of the datasets and
affirm the utility of GPT-4 in evaluating instruction
difficulty.

The following list includes seven examples of in-
structions scored by GPT-4, with respective scores
of 1, 1.5, 2.6, 3.25, 4.5, 4.75, and 5. The scoring
prompt is provided in Figure 3.

• Score: 1.0, Instruction: Given the follow-
ing definition, build a sentence using the word.
Input: To send away abruptly or angrily. Out-
put: He angrily dismissed me without even
giving me an explanation.

• Score: 1.5, Instruction: Generate two points
that could be used to extend the following
statement. Input: Internet has become an im-
portant way to access knowledge. Output: -
It has also become a key tool for collabora-
tion and communication. - It has provided a
platform for the sharing of ideas and greater
access to global markets.

• Score: 2.6, Instruction: Propose two ap-
propriate and different methods to solve the
given problem. Input: Predicting whether an
email is a spam or not. Output: Two possible
methods for predicting whether an email is a
spam or not are supervised machine learning
models such as artificial neural networks and
Naive Bayes classifiers, or an unsupervised
machine learning method such as clustering
and anomaly detection.

• Score: 3.25, Instruction: Edit this passage
to make it more engaging to readers. Input:
We went for a walk in the park and saw a lot
of trees. Output: As we strolled through the
crisp park, we were treated to sights of lush
green trees rustling in the wind, stretching for
miles with their towering dignity.

• Score: 4.5, Instruction: What is a 9-digit
number that is divisible by 7? Input:. Out-
put: 105,714,285 is a 9-digit number that is
divisible by 7.

• Score: 4.75, Instruction: Generate a sen-
tence that has an implied metaphor. Input:.
Output: My love for her was a warm summer
breeze, picking me up and carrying me away.

• Score: 5, Instruction: Design a logo for
a restaurant called ’Taste of Home’.Input:.
Output: A font-based logo in a handwritten
script style, with the words ’Taste of Home’ in
an orange color for a warm and inviting feel-
ing. The logo should also contain an image of
a fork and spoon in the same color.

A.3 ChatGPT-4 for evaluating win rate
Figure 7 details the prompt used for scoring and
comparing the quality of output generated by two
models using GPT-4. To mitigate any potential
positional bias (Wang et al., 2023a; Chen et al.,
2024) from GPT-4, we conduct two scoring ses-
sions. Specifically, we provide GPT-4 with inputs
in two different orders: (instruction, input, output-1
of model 1, output-2 of model 2) and (instruction,
input, output-2 of model 2, output-1 of model 1)
for separate evaluations.

A.4 Comparison of win rate trends across
multi-stages of uptraining

Figure 8 is a summary of this paper, which incor-
porates the results from Table 3. As can be seen
from the figure, with the progression of uptrain-
ing, it demonstrates the winning rate growth trend
of five LLMs on multi-stage sub-datasets with in-
creasing difficulty. This forms a stark contrast to
the winning rate trend of the same five LLMs on
multi-stage sub-datasets with randomly distributed
difficulty levels.

To be specific, the winning rate steadily contin-
ues to increase when uptraining on the sub-datasets
with incremental difficulty. Conversely, when up-
training on the sub-datasets with random difficulty,
the winning rate first increases then decreases, apart
from the continuously declining winning rate trend
of Llama3 70B. This indicates that the Progressive
Alignment Hypothesis we proposed is an effective
instruction learning method. It gradually learns
from the pre-training model’s ability to predict the
next word to eventually acquire the ability to com-
plete the human end task.
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