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Abstract

Commonsense explanation generation aims to
empower the machine’s sense-making capa-
bility by generating plausible explanations to
statements against commonsense. While this
task is easy to human, the machine still strug-
gles to generate reasonable and informative
explanations. In this work, we propose a
method that first extracts the underlying con-
cepts which are served as bridges in the reason-
ing chain and then integrates these concepts
to generate the final explanation. To facilitate
the reasoning process, we utilize external com-
monsense knowledge to build the connection
between a statement and the bridge concepts
by extracting and pruning multi-hop paths to
build a subgraph. We design a bridge concept
extraction model that first scores the triples,
routes the paths in the subgraph, and further
selects bridge concepts with weak supervision
at both the triple level and the concept level.
We conduct experiments on the commonsense
explanation generation task and our model out-
performs the state-of-the-art baselines in both
automatic and human evaluation.1

1 Introduction

Machine commonsense reasoning has been widely
acknowledged as a crucial component of artificial
intelligence and a considerable amount of work has
been dedicated to evaluate this ability from various
aspects in natural language processing (Levesque
et al., 2011; Talmor et al., 2018; Sap et al., 2019).
A large proportion of existing tasks frame common-
sense reasoning as multi-choice reading compre-
hension problems, which lack direct assessment
to machine commonsense (Wang et al., 2019) and
impede its practicability to realistic scenarios (Lin

∗ Corresponding author
1The source code is available at https://github.

com/cdjhz/CommExpGen.

Statement: The school was open for summer.
Explanation: Summertime is typically vacation time
for school.

Figure 1: Generating a reasonable and informative ex-
planation involves generating bridge concepts like va-
cation by identifying the relation to the source con-
cepts, i.e. school and summer in the statement.

et al., 2019b). Recently, Wang et al. (2019) pro-
posed a commonsense explanation generation chal-
lenge that directly tests machine’s sense-making
capability via commonsense reasoning. In this pa-
per, we focus on the challenging explanation gener-
ation task where the goal is to generate a sentence
to explain the reasons why the input statement is
against commonsense, as shown in Figure 1.

Generating a reasonable explanation for a state-
ment faces two main challenges: 1) Trivial and
uninformative explanations. As this task can be
formulated as a sequence-to-sequence generation
task, existing neural language generation models
tend to generate trivial and uninformative explana-
tions. For example, one of the existing neural mod-
els generates an explanation “The school wasn’t
open for summer” to the statement in Figure 1. Al-
though it is sometimes reasonable, simple modifi-
cation of the statement to the negation form with no
additional information cannot explain the reasons
why the statement conflicts with commonsense. 2)
Noisy commonsense knowledge grounding. It’s
still challenging for most existing language genera-
tion models to generate explanations that are faith-
ful to commonsense (Lin et al., 2019b). Thus, ex-
plicitly incorporating external knowledge sources
is necessary for this task. Since the nature of the
explanation generation task involves using underly-
ing commonsense knowledge to explain, locating
useful commonsense knowledge from large-scale
knowledge graph is not trivial and generally re-
quires multi-hop reasoning.

https://github.com/cdjhz/CommExpGen
https://github.com/cdjhz/CommExpGen
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To address the above challenges, we propose
a two-stage generation framework that first ex-
tracts the critical concepts served as bridges be-
tween the statement and the explanation from an
external commonsense knowledge graph, and then
generates plausible explanations with these con-
cepts. We first retrieve multi-hop reasoning paths
from ConceptNet (Speer et al., 2017) and heuris-
tically prune the paths to maintain the coverage
to plausible concepts while keeping the scale of
the subgraph tractable. Before the extraction stage,
we initialize the representation of each node on
the subgraph by fusing both the contextual and
graph information. Then, we design a bridge con-
cept extraction model that scores triples, propa-
gates the probabilities along multi-hop paths to the
connected concepts and further extracts plausible
concepts. In the second stage, we use a pre-trained
language model (Radford et al., 2019) to generate
the explanation by integrating both the statement
and the extracted concept representations. Exper-
imental results show that our framework outper-
forms knowledge-aware text generation baselines
and GPT-2 (Radford et al., 2019) in both automatic
and human evaluation. Particularly, our model gen-
erates explanations with more informative content
and provides reasoning paths on the knowledge
graph for concept extraction.

To summarize, our contributions are two-fold:

• We analyze the under-explored common-
sense explanation generation task and investi-
gate the challenges in incorporating external
knowledge graph to aid the generation prob-
lem. To the best of our knowledge, this is
the first work on generating explanations for
counter-commonsense statements.

• We propose a two-stage generation method
that first extracts the bridge concepts from
reasoning paths and then generates the expla-
nation based on these concepts. Our model
outperforms state-of-the-art baselines on the
commonsense explanation generation task in
both automatic and human evaluation.

2 Related Work

2.1 Machine Commonsense Reasoning
Previous work on machine commonsense rea-
soning mainly focuses on the tasks of infer-
ence (Levesque et al., 2011), question answer-
ing (Talmor et al., 2018; Sap et al., 2019) and

knowledge base completion (Bosselut et al., 2019).
While the ultimate goals of these tasks are differ-
ent from ours, we argue that performing explicit
commonsense reasoning is also critical to genera-
tion. A line of work (Bauer et al., 2018; Lin et al.,
2019a) resorts to structured commonsense knowl-
edge and builds graph-aware representations along
with the contextualized word embeddings to tackle
the commonsense question answering problem. In
our work, we focus on reasoning over structured
knowledge to explicitly infer discrete bridge con-
cepts that are further used for text generation. An-
other line of work (Rajani et al., 2019; Khot et al.,
2019) identifies the knowledge gap critical for the
complete reasoning chain and fills the gap by writ-
ing general explanation or acquiring fine-grained
annotations with human effort. While sharing a
similar motivation, our method differs from theirs
in the sense that we acquire distant supervisions for
the bridge concepts to extract reasoning paths and
generate plausible explanations without the need
of additional human annotation.

2.2 Knowledge-Grounded Text Generation

Existing work that utilizes structured knowledge
graphs to generate texts mainly lies in conversation
generation (Zhou et al., 2018; Tuan et al., 2019;
Moon et al., 2019), story generation (Guan et al.,
2019) and language modeling (Ahn et al., 2016;
Logan et al., 2019; Hayashi et al., 2019). Zhou
et al. (2018) and Guan et al. (2019) propose to use
graph attention that incorporates the information
of neighbouring concepts into context representa-
tions to help generate the target sentence. Yang
et al. (2019) resort to a dynamic concept mem-
ory that updates during essay generation. Guan
et al. (2020) conduct post-training on knowledge
triples to enhance the GPT-2 with commonsense
knowledge. Since one-hop graphs of concepts in
the statement have low coverage to the concepts
in the explanation, merely leveraging information
of individual concepts or triples is not suitable for
this task. Another direction that utilizes more com-
plex graph is to model multi-hop reasoning by per-
forming random walk (Moon et al., 2019) on the
knowledge graph or simulating a Markov process
on the pre-extracted knowledge paths (Tuan et al.,
2019). While in our task, we don’t have access
to a parallel grounded knowledge source nor the
bridge concepts, which makes the problem even
more challenging.
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Figure 2: The inference process of our model. In the reasoning path retrieval stage (§3.3), a subgraph is firstly
retrieved from the ConceptNet given the source concepts (Cx), where each node representation is fused with both
textual and graph-aware representations (§3.4). Then the model scores each triple on the subgraph, routes the path
by propagating the probabilities along paths to the connected nodes, and selects concepts from activated nodes
(§3.5). Finally, the model generates the explanation by integrating the token embeddings of both the statement and
the top-ranked concepts (§3.6).

3 Methodology

3.1 Task Definition
The commonsense explanation generation task is
defined as generating an explanation given a state-
ment against commonsense. Let x = x1 · · ·xN
be the input statement with N words and y =
y1 · · · yM be the explanation with M words. A
simple sequence-to-sequence formulation which
learns a mapping from x to y can be adopted in
this task:

P (y|x) =
M∏
t=1

P (yt|y<t,x). (1)

3.2 Model Overview
Formally, our model generates the explanation by
firstly extracting the critical bridge concepts c on a
retrieved knowledge graph Gx given the statement
x and then integrating the bridge concepts and the
statement to generate a proper explanation y, which
can be formulated as follows:

P (y, c|x) = P (c|x)P (y|x, c) (2)

where the bridge concepts c are defined as the
unique concepts delivered in the explanation but
not mentioned in the statement. Figure 2 presents
the overview of our model framework. Firstly, we
retrieve multi-hop reasoning paths from the Con-
ceptNet based on the statement, and heuristically
prune the noisy connections to obtain a subgraph
for further concept extraction (§3.3). To score the
paths and concepts, we obtain the fused concept
representation for each node on the subgraph by
considering both the contextual and graph infor-
mation (§3.4). Secondly, we design a path routing
algorithm to propagate the triple probabilities along

multi-hop paths to the connected concepts and fur-
ther extract plausible concepts (§3.5). Finally, our
model generates the explanation by integrating the
statement representation and the selected concept
representation as inputs (§3.6).

3.3 Reasoning Path Retrieval

In this section, we demonstrate how we retrieve
and prune the reasoning paths to form a subgraph.
We also acquire distant supervision for uncovering
the bridge concepts in the subgraph to supervise
the concept extraction in the next stage.

Given an external commonsense knowledge
graphG = (V,E), for each statement x, we extract
source concepts Cx = {cix} from x by aligning the
surface texts in x to the concepts in V . We also
use the stem form of the surface texts to enable soft
alignment and filter out stop words. At the training
phase, we extract the target concepts Cy = {cjy}
from the explanation y with a similar procedure.

Starting with the source concepts, we then re-
trieve reasoning paths from the knowledge graph to
form a subgraph that has relatively high coverage
to the bridge concepts with a tractable scale.

We first examine the minimum length of paths
that connect source concepts Cx with each concept
in the explanation set Cy −Cx. As shown in Figure
3, over 80% of the examples require two or three
hops of connection from the source concepts to the
concepts that are merely mentioned in the expla-
nation, which indicates the necessity for multi-hop
reasoning.

We then count the number of concepts covered
by subgraphs with different numbers of hops start-
ing from the source concepts (We only consider
concepts in the training data). As Figure 3 shows,
the average number of nodes covered by 3-hop sub-
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Figure 3: The left axis presents the distribution of the
minimum required number of hops to reach the con-
cepts in the explanation set Cy − Cx from the source
concepts in Cx. The right axis shows the number of
nodes in the subgraph with different number of hops.

graph exceeds 6,000, indicating the need of path
pruning to keep the scale tractable.

Therefore, we design a heuristic algorithm to
retrieve a subgraph Gx = {Vx, Ex} from the Con-
ceptNet by expanding the source concepts with 3
hops to cover most bridge concepts. To keep the
scale of the subgraph tractable, at each iterating
step, we enlarge Vx with B neighbour concepts
most commonly visited by concepts in Vx. Intu-
itively, the salient bridge concepts should be in a
reasonable distance from the source concepts on
the graph to maintain the semantic relation and
should be commonly visited nodes that support the
information flow on the graph.

We distantly label the bridge concepts as the
unique concepts in the explanation that could be
covered by the subgraph:

Bx→y = {c|c ∈ Cy − Cx, c ∈ Vx} (3)

3.4 Fused Concept Representation

We initialize each node on the subgraph with a
fused concept representation hc by considering
both the contextual feature of the concept and the
graph-aware information. We first obtain the con-
textualized statement representation Hx ∈ RN×d1

using a multi-layer bi-directional Transformer en-
coder (Vaswani et al., 2017).

H0
x = one hot(x) ·We +Wp (4)

Hl
x = trm block(Hl−1

x ), l = 1, . . . , L (5)

where We is the token embedding matrix, Wp is
the position embedding matrix, trm block(·) is
the transformer block with bi-directional attention
and L is the number of Transformer blocks. We
typically choose the output of the last layer HL

x as
the statement representation Hx.

Then we consider the following embeddings:

• Context-aware token embedding. In order
to enhance the contextual dependency of the
concept c to the statement x, we utilize a bi-
attention network (Seo et al., 2016) that mod-
els the cross interaction between the concept
and the statement.

Htok
c = one hot(c) ·We (6)

Hcon
c = bi-attention(Htok

c ,Hx) (7)

Then we integrate Htok
c and Hcon

c by max
pooling and linear transformation to obtain
a fixed-length representation that encodes the
textual information of the concept c:

htext
c = mlp

(
max

(
[Htok

c ;Hcon
c ]
))

(8)

• Concept distance embedding. To encode
the graph-aware structure information into the
node representation, we design a concept dis-
tance embedding hdist

c ∈ Rd1 that encodes the
relative distance from concept c to the source
concepts Cx on the subgraph. Specifically, the
concept distance for concept c is defined as
the minimum length of the path that can be
reached from one source concept in Cx:

dc = min
cx∈Cx

Dist(cx, c) (9)

The concept distance is then used as an index
to look up a trainable matrix Wd and obtain
the hdist

c ∈ Rd1 .

Finally, the fused concept representation hc is
obtained by concatenating the context-aware token
embedding and the concept distance embedding.

hc = [htext
c ;hdist

c ] (10)

3.5 Bridge Concept Extraction

We describe the core component of our method
in this section, which extracts the bridge concepts
for further explanation generation. It first scores
triples on the subgraph to downweight the noisy
paths. Then it aggregates the path scores to each
connected concepts by a path routing process and
deactivates the nodes with low routing scores. Fi-
nally it selects top-ranked bridge concepts from the
activated nodes.
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3.5.1 Triple Scoring
Firstly, we calculate the triple scores according to
the representation of triples and the input state-
ment. For each triple e = (ce,head, re, ce,tail)
where ce,head/ce,tail indicates the head / tail con-
cept and re denotes the relation, we can obtain its
representation by concatenating the representations
of the head concept, the relation and the tail con-
cept:

he = [hce,head ;hre ;hce,tail ] (11)

Both the head and the tail representations are cal-
culated by Equation (10) and the relation represen-
tation is acquired by indexing a trainable relation
embedding matrix Wr. Then we use the statement
representation to query each triple representation
by taking the bilinear dot-product attention and
calculate the selection probability for each triple:

hx = max-pooling(Hx) ∈ Rd1 (12)

P (e|x) = σ(heW2h
T
x ) (13)

We adopt weak supervision to supervise the
triple scoring process. For each concept c ∈ Bx→y,
we obtain the set of the shortest paths Px→c us-
ing the breadth-first search from each concept
of Cx to c. We consider all these shortest paths
Px→y =

⋃
c∈Bx→y

Px→c as the supervision of our
triple scoring process as they connect the reason-
ing chain from the statement to the explanation
with minimum distractive information. Accord-
ingly, other triples in Gx which don’t belong to
Px→y are regarded as negative samples. The loss
function of triple scoring is devised as follows:

Ltriple =−
∑
e∈Gx

I(e ∈ Px→y) logP (e|x)

+ [1− I(e ∈ Px→y)] log[1− P (e|x)]
(14)

where I(e ∈ Px→y) is an indicator function that
takes the value 1 iff e ∈ Px→y, and 0 otherwise.

3.5.2 Path Routing
Next, we describe the path routing process which
involves propagating the scores along the paths to
each concept on the subgraph from the source con-
cepts. For each path p retrieved from the subgraph
Gx, we calculate a path score s(p) by aggregating
the triple score P (e|x) along the path:

s(p) =
1

|p|
∑
e∈p

P (e|x) (15)

For each concept c, we consider all the shortest
paths Px→c that starts with the source concepts
and ends with c monotonically, i.e., the concept
distance of each node on the path increases mono-
tonically along the path. Then we calculate the
routing score for the concept c by averaging the
path scores of Px→c.

s(c) =
1

|Px→c|
∑

p∈Px→c

s(p) (16)

Intuitively, this process disseminates the triple
scores and aggregates them to the connected con-
cepts. Then we deactivate some paths based on the
path routing results and obtain Vx→y by preserving
concepts with the top-K1 routing scores.

3.5.3 Concept Selection
Finally, we conduct concept selection based on the
concept representation and the statement represen-
tation. For each concept in Vx→y, we calculate
the selection probability for it by taking the dot-
product attention and adopt a similar cross-entropy
loss with supervision from bridge concepts Bx→y:

P (c|x) = σ(hcW3h
T
x ) (17)

Lconcept = −
∑

c∈Vx→y

I(c ∈ Bx→y) logP (c|x)

+ [1− I(c ∈ Bx→y)] log[1− P (c|x)]
(18)

where the indicator function is similar to that of
Equation (14).

Finally, the bridge concepts with top-K2 proba-
bility P (c|x) are selected as the additional input to
the generation model.

3.6 Explanation Generation
We utilize a pre-trained Transformer decoder (Rad-
ford et al., 2019) as our generation model which
shares the parameter with the Transformer encoder.
Essentially, it takes the statement x and the con-
cepts c as input and auto-regressively generates the
explanation y:

P (y|x, c) = P (y|x, c1, · · · , cK2)

=

M∏
t=1

P (yt|x, c1, · · · , cK2 ,y<t)

(19)

Lgeneration = − logP (y|x, c1, · · · , cK2) (20)



253

As shown in Figure 2, the input to the Trans-
former decoder is the token embeddings of both
the statement and the selected concepts concate-
nated along the sequence length dimension.

To model bi-directional attention on the input
side while preserving the causal dependency of the
generated sequence, we adopt a hybrid attention
mask where each token on the input side could
attend to all the tokens in the input sequence while
the generated token at each time step only attends
to the input sequence and the previously generated
tokens.

3.7 Training and Inference

To train the model, we optimize the final loss func-
tion which is the sum of the three loss functions:

Lfinal = Lgeneration + λ1Ltriple + λ2Lconcept
(21)

As for the inference process, Figure 2 demon-
strates how our model retrieves reasoning paths
given the statement, extracts bridge concepts and
finally generates the explanation.

4 Experiment

4.1 Dataset and Experimental Setup

4.1.1 Commonsense Explanation Dataset

We adopt the dataset from the Commonsense Vali-
dation and Explanation Challenge2 which consists
of three subtasks, i.e., commonsense validation,
commonsense explanation selection and common-
sense explanation generation. We focus on the
explanation generation subtask in this paper. The
commonsense explanation generation subtask con-
tains 10, 000 statements that are against common-
sense. For each statement, three human-written
explanations are provided. To evaluate our pro-
posed model and other baselines, we randomly
split 10% data as the test set, 5% as the devel-
opment set and the latter as the training set. Note
that we further split each example in the training
set into three statement-explanation pairs, while
for the development set and the test set we use the
three corresponding explanations as references for
each statement. This results in our final data split
(25,596 / 476 / 992) denoted as (train / dev / test).

2https://competitions.codalab.org/
competitions/21080

4.1.2 Commonsense Knowledge Graph
We use the English version ConceptNet as our ex-
ternal commonsense knowledge graph. It contains
triples in the form of (h, r, t) where h and t rep-
resent head and tail concepts and r is the relation
type. We follow Lin et al. (2019a) to merge the
original 42 relation types into 17 types. We ad-
ditionally define 17 reverse types corresponding
to the original 17 relation types to distinguish the
direction of the triples on the graph.

4.2 Automatic Evaluation Metrics

To automatically evaluate the performance of the
generation models, we use the BLEU-3/4 (Pap-
ineni et al., 2001), ROUGE-2/L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005) as our main
metrics. We also propose Concept F1 to evaluate
the accuracy of the unique concepts in the gener-
ated explanation that do not occur in the statement.

Specifically, given the generated explanation ŷ
and the reference explanation y, we extract a set of
concepts Cŷ and Cy from the generated explanation
and the reference explanation respectively using
the method in §3.3. We denote the sets of unique
concepts in the explanation as Uy = Cy − Cx and
Uŷ = Cŷ − Cx. Then we can compute the Concept
F1 as the harmonic mean of recall and precision.

recall =
|Uŷ ∩ Uy|
|Uy|

, precision =
|Uŷ ∩ Uy|
|Uŷ|

(22)

4.3 Implementation Details

For the reasoning path retrieval process, we set the
maximum number of neighbours B = 300 at each
hop. For each example, we restrict the concepts of
the subgraph to those only appeared in the training
and development set.

We use a pre-trained Transformer language
model GPT-2 (Radford et al., 2019) as the initializa-
tion of the Transformer model. We set the hidden
dimension d1 = 768 identical to the hidden size of
the Transformer. We empirically set the following
hyperparameters by tuning the model on the devel-
opment set: selection threshold K1 = 30,K2 = 3,
loss coefficients λ1 = 1, λ2 = 1, number of epochs
= 3, batch size = 4, learning rate = 4× 10−5 and
use the Adam optimizer (Kingma and Ba, 2015)
with 10% warmup steps. We select the model with
the highest BLEU-4 score on the development set
and evaluate it on the test set. At the decoding

https://competitions.codalab.org/competitions/21080
https://competitions.codalab.org/competitions/21080
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Model B-3/4 R-2/L M Concept F1

Seq2Seq 10.7/6.1 9.9/25.8 11.4 11.1
MemNet 10.2/5.7 8.8/25.7 11.0 11.5

Transformer 10.0/5.8 9.6/26.0 12.0 11.7
GPT-2-FT 23.4/15.7 18.9/36.5 17.7 17.4

Ours 24.7/17.1 20.2/37.9 18.3 20.1

Table 1: Automatic evaluation of explanation genera-
tion in terms of BLEU (B), ROUGE (R), METEOR (M)
and Concept F1.

Setting BLEU-4 Concept F1

Ours 17.1 20.1
w/o Context Emb. 16.0 18.6
w/o Distance Emb. 16.4 18.5
w/o Path Routing 16.5 19.2

#Hop = 2 16.2 18.3
#Hop = 1 15.9 17.3

Table 2: Ablation study of our framework on the test
set. We present the model ablation results in the upper
block and the data ablation results in the lower block.

phase, we use beam search with a beam size of 3
for all models.

4.4 Baseline Models

We compare with the following baseline models:

• Seq2Seq: a sequence-to-sequence model
based on gated recurrent unit (GRU) (Cho
et al., 2014) and attention mechanism, which
is widely used in text generation tasks (Bah-
danau et al., 2015).

• MemNet: a knowledge-grounded sequence-
to-sequence model (Ghazvininejad et al.,
2018). In our experimental setting, we re-
gard all the concepts which are connected with
those in the statements as knowledge facts.

• Transformer: an encoder-decoder frame-
work commonly used in machine translation
tasks (Vaswani et al., 2017).

• GPT-2: a multi-layer Transformer decoder
pre-trained on WebText (Radford et al., 2019)
which is then directly fine-tuned on our
dataset.

4.5 Experimental Results

As shown in Table 1, our model achieves the best
performance in terms of all the automatic evalua-
tion metrics, which demonstrates that our model
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Figure 4: P/R@N measures the precision / recall of the
top-N selected bridge concepts. Concept F1 measures
the F1-score of concepts in the generated explanations.

can generate high quality explanations. Specifi-
cally, our model achieves a 2.7% gain on Concept
F1 compared with GPT-2 which indicates that ex-
plicitly extracting bridge concepts enhances the
informativeness of the generated explanation.

To evaluate the effects of different modules in
our method, we conduct ablation studies on both
the model components and the external knowledge
base. For the model components, we test the fol-
lowing variants: (1) without the context-aware to-
ken embeddings (w/o Context Emb.); (2) without
the concept distance embeddings (w/o Distance
Emb.); (3) without the path routing process (w/o
Path Routing). As for the data ablation, we sam-
ple subgraphs by restricting the maximum number
of hops to 2 (#Hop=2) and 1 (#Hop=1).

As shown in Table 2, each module contributes
to the final results. Particularly, discarding the
context-aware embeddings leads to the most re-
markable performance drop, which indicates the
significance for context modeling in multi-hop rea-
soning. Besides, the data ablation results demon-
strate that as the subgraph has less coverage, the
generation model will suffer from the noisy con-
cepts and thus deteriorate the generation results.

We additionally present the results of the se-
lected and generated concepts with different con-
cepts selection threshold K2. As shown in the up-
per part of the Figure 4, as the number of selected
concepts increases, more true positives are selected,
resulting in the increase of the recall (Recall@N)
while the inclusion of more false positives leads to
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Error Type Ratio (%) Input Output

Repetition 7.7 She begins working for relaxation. People work to relax, not relax.
Overstatement 19.2 Less people seek knowledge. People don’t seek knowledge.
Unrelated 26.9 The simplest carbohydrates are amino acid. Alkaloids are not found in bread.
Chaotic 11.5 Giving assistance is for revenge. If you help someone, you are grateful.

Table 3: Distribution and typical cases of different error types of the explanations generated by our model. Under-
lined texts denote the error types including repetition, overstatement, unrelated words and chaotic expression.

Model Fluency Reasonability Informativeness
Win Lose Win Lose Win Lose

vs. Seq2seq 0.41 0.02 0.86 0.04 0.84 0.05
vs. MemNet 0.48 0.00 0.84 0.03 0.87 0.03
vs. Transformer 0.33 0.01 0.71 0.03 0.72 0.03
vs. GPT-2 0.20 0.10 0.40 0.27 0.34 0.15

Table 4: Human evaluation results. The scores are the
percentages of win and lose of our model in pair-wise
comparison (tie can be calculated by 1− win− lose).
Our model is significantly better (sign test, p-value <
0.005) than all the baseline models on all three criteria.

the decrease of the precision (Precision@N) . The
Concept F1 reaches maximum when K2 = 3 (see
the lower part), which demonstrates that the model
learns to extract critical concepts for explanation
generation while keeping out most noisy candidates
with an appropriate selection threshold.

4.6 Human Evaluation
To further evaluate the quality of the generated ex-
planations, we conduct the human evaluation and
recruit five annotators to perform pair-wise com-
parisons. Each annotator is given 100 paired expla-
nations (one generated by our model and the other
by a baseline model, along with the statement) and
is required to give a preference among “win”, “tie”,
and “lose” according to three criteria: (1) Fluency
which measures the grammatical correctness and
the readability of the explanation. (2) Reasonabil-
ity which measures whether the explanation is rea-
sonable and accords with the commonsense. (3)
Informativeness which measures the amount of new
information delivered in the explanation that helps
explain the statement.

The results are shown in Table 4, our model
outperforms all the baseline models significantly
on all three criteria (sign test, p-value < 0.005).
Specifically, our model wins GPT-2 substantially
in terms of reasonability and informativeness.

To evaluate the inter-rater agreement for each
criterion, we calculate the Fleiss’ kappa (Fleiss,
1971). For Reasonability / Informativeness, the
kappa is 0.429 / 0.433 respectively indicating a

Statement 1: I buy popcorn and knife when I go to the
cinema.

Seq2Seq: A person cannot buy a person to watch a
movie.
MemNet: A toothbrush is not a place to play a movie.
Transformer: A fridge is not a place to store groceries.
GPT-2: You don’t buy popcorn and knife at the cinema.

Ours: Knives are not sold at the cinema.
Top-3 reasoning paths: (buy→antonym→sell), (
popcorn → related to→food), (cinema→ related to→
movie)
Selected concepts: sell, place, movie

Statement 2: He eats his chips with toothpaste.

Seq2Seq: Chopsticks are not edible.
MemNet: A potato is too soft to eat juice with your
teeth.
Transformer: You do not eat sand with a cup.
GPT-2: Toothpaste is not edible.

Ours: Toothpaste is used to clean teeth.
Top-3 reasoning paths: (eat→related to→tooth), (
toothpaste→related to→paste→related to→use), (eat
→has subevent →work→related to→use)
Selected concepts: use, tooth, food

Table 5: Examples of generated explanations. Irrele-
vant contents are in red and critical concepts for expla-
nation are in green.

moderate agreement among annotators. In terms of
Fluency, annotators show diverse preferences (κ =
0.245) since GPT-2 has strong ability in generating
fluent texts.

4.7 Case Study

Table 5 presents the generated explanations. Our
model is capable to generate reasonable and in-
formative explanations by utilizing the extracted
bridge concepts. Specifically, in the first case our
model extracts bridge concepts “sell” and identifies
the incompatibility between “knives” and “cinema”.
In the second case, our model clarifies the func-
tion of the “toothpaste” by extracting “use” from
two reasoning paths and provides more information
rather than simply negative phrasing.
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4.8 Error Analysis

To analyze the error types of the explanations gen-
erated by our model, we manually check all the
failed cases3 in the pair-wise comparison between
our model and the strong baseline GPT-2. The num-
ber of these cases is 26 in all 100 explanations. We
manually annotated four types of errors from the
failed explanations: repetition (words repeating),
overstatement (overstate the points), unrelated
concepts towards the statement (the explanation
itself may be reasonable), chaotic sentences (dif-
ficult to understand). As shown in Table 3, it is
still challenging for the model to generate explana-
tions highly related to the statement with accurate
wording.

5 Conclusion

In this paper, we analyze the challenges in incor-
porating external knowledge graph to aid the com-
monsense generation problem and propose a two-
stage method that first extracts bridge concepts
from a retrieved subgraph and then generates the
explanation by integrating the extracted concepts.
Experimental results show that our model outper-
forms baselines including the strong pre-trained
language model GPT-2 in both automatic and man-
ual evaluation.
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